Redesigning an (R)-Selective Transaminase for the Efficient Synthesis of PharmaceuticalN-Heterocyclic Amines

催化作用 化学 组合化学 基质(水族馆) 活动站点 转氨酶 对接(动物) 残留物(化学) 有机化学 立体化学 医学 海洋学 地质学 护理部
作者
Fulong Li,Yan Du,Youxiang Liang,Yuwen Wei,Yukun Zheng,Huimin Yu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (1): 422-432 被引量:29
标识
DOI:10.1021/acscatal.2c05177
摘要

Transaminases show potential for the industrial synthesis of important pharmaceutical ingredients. However, these naturally occurring enzymes show poor activity toward bulky N-heterocyclic compounds. To produce a catalyst with enhanced catalytic efficiency, this study redesigned an (R)-selective transaminase from Rhodobacter sp. 140A (RbTA). Key residues for substrate binding were identified by molecular docking and molecular dynamics simulations. A "simplified amino acid alphabet," consisting of amino acids of different sizes (Phe, Asn, Val, and Ala), was then used to fine-tune the substrate-binding pocket by producing a small but smart variant library. Residue Y125 was found to be critical for substrate binding, and variant RbTAM1(Y125A), exhibiting a remarkable activity enhancement, was obtained. Through combined mutation, the most active variant, RbTAM2(Y125A/I6A/L7A/L158V), was constructed, exhibiting 1064-fold greater catalytic efficiency (kcat/Km) toward substrate N-Boc-3-piperidone (7a) than the wild-type enzyme. This variant also exhibited significantly improved activity (4–110-fold) toward a series of cyclic and bulky heterocyclic ketones. Structure-guided analysis of variant Y125A and molecular simulations revealed that the introduction of residue A125 enlarged the substrate-binding pocket volume and enabled additional hydrophobic interactions with the substrate, facilitating binding in a more favorable conformation for catalysis. The activity of variant RbTAM2 was verified in the gram-scale synthesis of chiral N-heterocyclic amine (R)-1-Boc-3-piperidinamine (7b), achieving 99% conversion and a space-time yield of 222 g L–1 d–1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助DTS采纳,获得10
刚刚
刚刚
hzs完成签到,获得积分10
刚刚
renerxiao完成签到,获得积分10
1秒前
1秒前
1秒前
peikyang发布了新的文献求助10
1秒前
狒狒完成签到,获得积分10
2秒前
搜集达人应助me采纳,获得10
2秒前
张小圆完成签到,获得积分10
2秒前
2秒前
杨111完成签到 ,获得积分10
3秒前
3秒前
鱼儿发布了新的文献求助10
3秒前
jhh发布了新的文献求助10
3秒前
李健应助尼古拉斯采纳,获得10
4秒前
xzlijingjing完成签到 ,获得积分10
4秒前
4秒前
宇宙的中心完成签到,获得积分10
5秒前
5秒前
6秒前
乐研客完成签到,获得积分10
6秒前
7秒前
伍六柒发布了新的文献求助10
7秒前
7秒前
栀子发布了新的文献求助10
7秒前
栀子发布了新的文献求助10
7秒前
栀子发布了新的文献求助10
7秒前
栀子发布了新的文献求助10
7秒前
莴笋叶发布了新的文献求助10
7秒前
田様应助邵璞采纳,获得10
8秒前
邱乐乐发布了新的文献求助10
8秒前
奋斗土豆完成签到,获得积分20
8秒前
8秒前
Scorpio发布了新的文献求助10
9秒前
单词量完成签到,获得积分10
9秒前
默问应助狒狒采纳,获得20
9秒前
10秒前
淡淡的归尘应助拼搏半梦采纳,获得10
10秒前
其实我想问完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795