Learning a Compact Spatial-Angular Representation for Light Field

计算机科学 增采样 计算机视觉 人工智能 光场 图像分辨率 残余物 亚像素渲染 像素 算法 图像(数学)
作者
Yangfan Sun,Li Li,Zhu Li,Shizheng Wang,Shan Liu,Ge Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 7262-7273
标识
DOI:10.1109/tmm.2022.3219671
摘要

The recent emergence of light field technology has led to new opportunities for immersive visual communication that has a need for high spatial and angular resolution, both of which contribute to a large image storage footprint and high-latency transmission. Task-driven downsampling methods have been proposed as a solution, and have shown improvements in single-image restoration. However, they are inevitable to disregard light field's intrinsic properties in the corresponding tasks. In this paper, we propose a light-field-specific task-driven downsampling framework, called the LFCrNet. The LFCrNet operates on a learning-based decreasing and increasing resolution in an end-to-end manner in order to utilize a cross-view asymmetric sampling technique. In detail, it separates raw data into disparity and non-disparity patterns by measuring pixel-wise residuals between the sub-aperture central view and auxiliary views. Then, a chain of 3-D deformable residual blocks (DRBs) is used to extract disparity features and manage these features regard of their intrinsic property individually. Afterwards, they are compacted into spatio-angular domains through a 3-D deformable downsampler (3-DDS). The non-disparity information is integrated into a separate pipeline that leverages spatial similarity across multiple light field views. This technique is capable of preserving specific occlusion components, and subsequently, restoring them using a learning-based upscaling method to generate a high-quality reconstruction. In general, our method has shown superior performance on multiple open-source datasets by a significant margin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君子儒完成签到,获得积分10
刚刚
风中的逊发布了新的文献求助10
刚刚
1秒前
小文子发布了新的文献求助10
2秒前
wang发布了新的文献求助10
3秒前
晨雾锁阳发布了新的文献求助10
3秒前
喜来乐发布了新的文献求助20
3秒前
嘻嘻嘻发布了新的文献求助10
3秒前
沈括完成签到,获得积分10
5秒前
5秒前
RuoxuanWang完成签到 ,获得积分10
6秒前
6秒前
爱喝可乐的猫完成签到,获得积分10
7秒前
7秒前
SciGPT应助elysia采纳,获得10
7秒前
传奇3应助ibigbird采纳,获得10
8秒前
9秒前
10秒前
10秒前
脑洞疼应助微弱de胖头采纳,获得10
11秒前
活力书包完成签到 ,获得积分10
14秒前
Robin95发布了新的文献求助10
14秒前
今后应助小文子采纳,获得10
15秒前
15秒前
15秒前
ming应助polarisblue采纳,获得10
17秒前
风中的逊完成签到,获得积分10
17秒前
lala发布了新的文献求助10
17秒前
18秒前
18秒前
嘻嘻嘻完成签到,获得积分10
18秒前
ibigbird完成签到,获得积分10
19秒前
19秒前
派大星发布了新的文献求助10
20秒前
20秒前
21秒前
iNk应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333