AI in Hydrometeorology: Deep Learning for Satellite Precipitation Fusion and Flood Forecasting

水文气象 大洪水 降水 卫星 气候学 气象学 环境科学 地理 地质学 工程类 考古 航空航天工程
作者
Chun Zhou,Lingling Wu,Zhuting Gu,Y.-R. Guo,Li Zhou
出处
期刊:IntechOpen eBooks [IntechOpen]
标识
DOI:10.5772/intechopen.1010807
摘要

This chapter reviews recent advances in the application of artificial intelligence for satellite precipitation data fusion, downscaling, and flood forecasting. Against the backdrop of global climate change and frequent extreme hydrometeorological events, particular emphasis is placed on the persistent challenges encountered by satellite precipitation products in complex terrain. AI and deep learning techniques have overcome many limitations of traditional forecasting methods by effectively addressing non-stationary spatiotemporal issues and delivering superior performance. In flood forecasting, rapid high-resolution simulations driven by AI not only significantly enhance the accuracy of numerical weather prediction (NWP) but also provide novel insights into the complex process through which precipitation uncertainty translates into hydrological risk. Emerging paradigms such as physics-informed neural networks exemplify the potential for an organic integration of process-driven hydrometeorology and data-driven AI, offering promising prospects for improved forecast accuracy and the development of adaptive warning systems, particularly in flash flood-prone regions such as the Tibetan Plateau. This chapter synthesizes the latest progress in understanding the error characteristics of satellite precipitation products, multi-source data fusion, downscaling, and flood forecasting. It advocates for the deep embedding of domain-specific physical mechanisms into AI frameworks, thereby providing a scientific foundation and decision-making support for flood control and disaster mitigation in the Upper Yangtze urban agglomeration, while simultaneously advancing hydrometeorological forecasting technologies on a global scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxyshare应助光锥之外采纳,获得10
刚刚
小菜鸟发布了新的文献求助10
刚刚
结实的XMZ发布了新的文献求助20
刚刚
打打应助长情天川采纳,获得10
1秒前
1秒前
1秒前
Hello应助对对碰采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
xiong完成签到,获得积分20
4秒前
lihaha发布了新的文献求助10
5秒前
anyao完成签到,获得积分20
5秒前
777完成签到,获得积分10
7秒前
煎饼完成签到,获得积分10
7秒前
anyao发布了新的文献求助10
7秒前
Dwen发布了新的文献求助10
8秒前
从容的丹南完成签到 ,获得积分10
8秒前
8秒前
9秒前
赘婿应助王富贵采纳,获得10
9秒前
9秒前
10秒前
风清扬发布了新的文献求助10
11秒前
丘比特应助anyao采纳,获得10
11秒前
科研通AI5应助受伤胡萝卜采纳,获得10
12秒前
12秒前
小蘑菇应助李培婷采纳,获得10
12秒前
静默完成签到 ,获得积分10
13秒前
煎饼发布了新的文献求助10
13秒前
对对碰发布了新的文献求助10
14秒前
羊羊完成签到,获得积分10
14秒前
14秒前
壮观的白羊完成签到 ,获得积分10
15秒前
zhongbo发布了新的文献求助10
16秒前
浮游应助梦蝶采纳,获得10
16秒前
科研通AI6应助nini采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助150
18秒前
18秒前
刘雪完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087467
求助须知:如何正确求助?哪些是违规求助? 4302837
关于积分的说明 13408929
捐赠科研通 4128209
什么是DOI,文献DOI怎么找? 2260744
邀请新用户注册赠送积分活动 1264924
关于科研通互助平台的介绍 1199253