Machine‐Learning‐Assisted Design and Optimization of Single‐Atom Transition Metal‐Incorporated Carbon Quantum Dot Catalysts for Electrocatalytic Hydrogen Evolution Reaction

催化作用 过渡金属 碳纤维 量子点 碳原子 电催化剂 氢原子 Atom(片上系统) 纳米技术 材料科学 化学物理 化学 物理化学 计算机科学 复合数 电化学 有机化学 电极 烷基 复合材料 嵌入式系统
作者
Unbeom Baeck,Min‐Cheol Kim,Duong Nguyen Nguyen,Jaekyum Kim,Jaehyoung Lim,Yujin Chae,Namsoo Shin,Heechae Choi,Joon Young Kim,Chan‐Hwa Chung,Woo‐Seok Choe,Ho Seok Park,Uk Sim,Jung Kyu Kim
出处
期刊:Carbon energy [Wiley]
标识
DOI:10.1002/cey2.70006
摘要

ABSTRACT Hydrogen evolution reaction (HER) in acidic media has been spotlighted for hydrogen production since it is a favourable kinetics with the supplied protons from a counterpart compared to that within alkaline environment. However, there is no choice but to use a platinum‐based catalyst yet. As for a noble metal‐free electrocatalyst, incorporation of earth‐abundant transition metal (TM) atoms into nanocarbon platforms has been extensively adopted. Although a data‐driven methodology facilitates the rational design of TM‐anchored carbon catalysts, its practical application suffers from either a simplified theoretical model or the prohibitive cost and complexity of experimental data generation. Herein, an effective and facile catalyst design strategy is proposed based on machine learning (ML) and its model verification using electrochemical methods accompanied by density functional theory simulations. Based on a Bayesian genetic algorithm ML model, the Ni‐incorporated carbon quantum dots (Ni@CQD) loaded on a three‐dimensional reduced graphene oxide conductor are proposed as the best HER catalyst amongst the various TM‐incorporated CQDs under the optimal conditions of catalyst loading, electrode type, and temperature and pH of electrolyte. The ML results are validated with electrochemical experiments, where the Ni@CQD catalyst exhibited superior HER activity, requiring an overpotential of 151 mV to achieve 10 mA cm −2 with a Tafel slope of 52 mV dec −1 and impressive durability in acidic media up to 100 h. This methodology can provide an effective route for the rational design of highly active electrocatalysts for commercial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大树爱树懒完成签到,获得积分10
刚刚
刚刚
科学家发布了新的文献求助10
4秒前
crisp发布了新的文献求助50
6秒前
寻梦完成签到,获得积分10
9秒前
12秒前
缪静柏发布了新的文献求助20
13秒前
14秒前
顾矜应助科研通管家采纳,获得10
15秒前
风清扬应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
CAOHOU应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
科研小黑应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
ding应助哆啦小鱼采纳,获得10
19秒前
pgg发布了新的文献求助10
19秒前
21秒前
nioh发布了新的文献求助10
21秒前
25秒前
雪白砖家完成签到 ,获得积分10
26秒前
h41692011完成签到 ,获得积分10
27秒前
852应助ray采纳,获得10
29秒前
错过发布了新的文献求助20
30秒前
stardust完成签到 ,获得积分10
32秒前
研友_ZlPNaZ完成签到,获得积分10
33秒前
威武语薇发布了新的文献求助30
34秒前
852应助读书的时候采纳,获得10
34秒前
36秒前
39秒前
39秒前
ray发布了新的文献求助10
40秒前
40秒前
41秒前
丘比特应助Doctor_mao采纳,获得10
41秒前
搜集达人应助123呵呵采纳,获得10
41秒前
健忘蘑菇完成签到,获得积分10
44秒前
45秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098059
求助须知:如何正确求助?哪些是违规求助? 3635801
关于积分的说明 11524379
捐赠科研通 3345883
什么是DOI,文献DOI怎么找? 1838999
邀请新用户注册赠送积分活动 906460
科研通“疑难数据库(出版商)”最低求助积分说明 823646