亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Co‐training semi‐supervised medical image segmentation based on pseudo‐label weight balancing

分割 计算机科学 加权 人工智能 机器学习 正规化(语言学) 模式识别(心理学) 图像分割 钥匙(锁) 计算机安全 医学 放射科
作者
Jiashi Zhao,Yao Li,Cheng Wang,Miao Yu,Weili Shi,Jianhua Liu,Zhengang Jiang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17712
摘要

Major challenges in current semi-supervised segmentation methods: (1) The complementary nature of information in pseudo-label: a key limitation of consistent regularization methods is the tendency of sub-networks to converge to the consensus case early on, leading to the degradation of co-trained models into self-trained models, whereas disagreement between sub-networks is important for joint training. (2) Quantity-quality weighting imbalance in pseudo-label methods: threshold-based pseudo-label is to train the model with pseudo-labels whose predicted confidence is higher than a hard threshold. In contrast, other pseudo-labels are simply ignored. This study aims to propose a semi-supervised model based on pseudo-labeled weight balancing for medical image segmentation tasks for the above-mentioned problems. We adopted a truncated Gaussian function weight balancing method based on the marginal hypothesis distribution to generate high-quality pseudo-labels while maintaining a high utilization rate of pseudo-labels, and based on which we applied a uniform alignment strategy to solve the pseudo-label imbalance problem due to the difference in the learning difficulty of different classes. In addition, to address the problem that self-training algorithms rely too much on the quality of pseudo-labels generated, we inherit the idea of knowledge refinement and integrate the mean teacher model of co-training, thus proposing a novel semi-supervised medical image segmentation framework, SCMT (Semi-supervised Co-training Mean Teacher), which is aimed at improving the existing self-training algorithms or co-training algorithms limitations of a single model. We validate the effectiveness of the method by performing experimental evaluation on two commonly used benchmark medical datasets, LA, and Pancreas-CT, by using 10%/20% labeled data and 90%/80% unlabeled data for training. On the LA dataset, the model obtained Hausdorff distance (HD) of 6.65 mm/5.63 mm, average symmetric surface distance of 1.91 mm/0.02 mm, Dice similarity coeffcient of 90.09%/91.05%, and Jaccard of 81.08%/83.64%. On the Pancreas-CT dataset, the model obtained HD of 12.71 mm/6.63 mm, average symmetric surface distance of 2.01 mm/1.27 mm, Dice similarity coeffcient of 74.64%/81.77% and Jaccard of 60.48%/69.51%. The results show that our method not only outperforms existing semi-supervised segmentation methods but also significantly improves segmentation performance and reduces the dependence on labeled data to achieve consistent and stable prediction results. We proposed a weight-balanced co-trained cross-consistent semi-supervised model SCMT for semi-supervised segmentation of medical images, which consists of a CMT (Co-training Mean Teacher) structure and quantity-quality-balanced pseudo-label-guided mutual consistency constraints. Compared with other models, we effectively exploit the challenging region and can more accurately capture the contours and finer details of the segmented objects without any shape or boundary constraints, resulting in highly accurate and detail-rich segmentation results. In addition, we conduct comparative experiments with existing semi-supervised models, and the experimental results show that our proposed model is capable of handling complex structures and segmenting details commonly missed by other methods. The segmentation results obtained are relatively stable and consistent and have certain advantages in improving the performance of surface segmentation. Code is available at: https://github.com/zhaojiashi/SCMT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joanna完成签到,获得积分10
2秒前
Becky完成签到 ,获得积分10
5秒前
楠茸完成签到 ,获得积分10
16秒前
19秒前
andrele应助科研通管家采纳,获得10
41秒前
可可龙完成签到,获得积分10
42秒前
小李完成签到 ,获得积分10
45秒前
50秒前
kang发布了新的文献求助10
56秒前
1分钟前
月亮门完成签到 ,获得积分10
1分钟前
积极的凝海完成签到,获得积分10
1分钟前
去有风的地方完成签到 ,获得积分10
1分钟前
新海天完成签到 ,获得积分10
1分钟前
wing完成签到 ,获得积分10
1分钟前
Gong完成签到 ,获得积分10
1分钟前
一只羊发布了新的文献求助10
1分钟前
cc完成签到,获得积分20
1分钟前
galaxy完成签到 ,获得积分10
1分钟前
tracywan完成签到,获得积分10
2分钟前
千纸鹤完成签到 ,获得积分10
2分钟前
闪闪蜜粉完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI5应助kang采纳,获得10
2分钟前
虚拟的凡波完成签到,获得积分10
2分钟前
王冬瓜完成签到,获得积分20
2分钟前
Li应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
杨无敌完成签到 ,获得积分10
2分钟前
SciGPT应助yunduan采纳,获得10
2分钟前
Corn_Dog完成签到,获得积分10
3分钟前
3分钟前
peninsula发布了新的文献求助10
3分钟前
3分钟前
3分钟前
斯文败类应助ZHANGMANLI0422采纳,获得10
3分钟前
3分钟前
kang发布了新的文献求助10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795529
求助须知:如何正确求助?哪些是违规求助? 3340541
关于积分的说明 10300468
捐赠科研通 3057077
什么是DOI,文献DOI怎么找? 1677420
邀请新用户注册赠送积分活动 805401
科研通“疑难数据库(出版商)”最低求助积分说明 762491