亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of an explainable machine learning model for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma: A multi-center study

医学 Lasso(编程语言) 列线图 阶段(地层学) 逻辑回归 颈淋巴结清扫术 队列 特征选择 神秘的 肿瘤科 比例危险模型 内科学 T级 人工智能 放射科 机器学习 癌症 病理 计算机科学 万维网 古生物学 替代医学 生物
作者
Runqiu Zhu,Yan Zhang,Jiayi Zhang,Haonan Yang,Chaobin Pan,Jinghong Li,Renjie Liu,Lianxi Mai,Xiqiang Liu
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (8): 5022-5035 被引量:1
标识
DOI:10.1097/js9.0000000000002641
摘要

Introduction: Due to the high propensity for occult lymph node metastasis (OLNM) in early-stage oral tongue squamous cell carcinoma (OTSCC), elective neck dissection has become standard practice for many patients with clinically node-negative (cT1–2 N0) disease, which may lead to overtreatment in some patients. Hence, accurate identification and prediction of OLNM are of great significance. Aim: This study aimed to develop and validate an explainable machine learning (ML) model to predict OLNM in OTSCC. Methods: A total of 678 early-stage OTSCC patients from multiple centers were enrolled and randomly classified into the derivation and external validation cohorts. The variables considered in this study primarily included clinicopathological characteristics associated with the occurrence of OLNM in OTSCC. Feature selection utilized multivariate logistic regression analysis and Lasso regression analysis. Meanwhile, six ML algorithms were employed to develop an OLNM diagnostic model, assessed with area under the curve (AUC), calibration curve, decision curve analysis, sensitivity, specificity, and validation cohorts. Moreover, the SHapley Additive exPlanation (SHAP) method was applied to rank the feature importance and interpret the final model. Results: In this study, 192 patients (34.7%) developed OLNM in the derivation cohort, while 38 patients (30.6%) developed OLNM in the external validation cohort. Through feature selection, nine clinicopathological variables were identified as independent predictive factors for OLNM, and six ML models were developed based on these factors. Among the six evaluated ML models, the random forest (RF) model achieved the highest AUC (0.941, 95% CI: 0.907–0.975) for internal validation. External validation further confirmed the RF model’s effectiveness, yielding an AUC of 0.917 (95% CI: 0.868–0.967). The calibration curves also demonstrated a high level of concordance between the anticipated risk and the observed risk of the RF model. Additionally, this study compared the RF model with the currently accepted traditional statistical methods, including depth of invasion and tumor budding, demonstrating superior prediction performance and greater clinical application value. Ultimately, an online computing platform (https://prediction-model-for-olnm.streamlit.app/) for this RF model is freely available to both clinicians and patients. Conclusion: This study innovatively utilized nine easily obtained clinicopathological features to construct an explainable RF model, providing a practical and reliable tool for predicting OLNM in early-stage OTSCC. More importantly, it also provided interpretable results, thus overcoming the “impenetrable black box” of conventional ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴电脑发布了新的文献求助10
1秒前
CodeCraft应助机智如霜采纳,获得10
4秒前
共享精神应助丽优采纳,获得10
10秒前
汉堡包应助jjc采纳,获得10
11秒前
Nichols完成签到,获得积分10
12秒前
田様应助高兴电脑采纳,获得10
14秒前
15秒前
18秒前
丽优发布了新的文献求助10
20秒前
20秒前
24秒前
机智如霜发布了新的文献求助10
24秒前
沉默的谷丝完成签到,获得积分10
25秒前
满意的西牛完成签到,获得积分10
33秒前
机智如霜完成签到,获得积分10
36秒前
47秒前
58秒前
huangbs完成签到,获得积分10
1分钟前
欢呼雁风发布了新的文献求助10
1分钟前
今后应助小刘采纳,获得10
1分钟前
顾矜应助丽优采纳,获得10
1分钟前
1分钟前
丽优发布了新的文献求助10
1分钟前
阿丕啊呸完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
scl完成签到,获得积分10
2分钟前
小刘发布了新的文献求助10
2分钟前
xx完成签到 ,获得积分10
2分钟前
小刘完成签到,获得积分10
2分钟前
jane123发布了新的文献求助10
2分钟前
drirshad发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
领导范儿应助3sigma采纳,获得10
3分钟前
浮游应助丽优采纳,获得10
3分钟前
Akim应助炸鸡叔采纳,获得30
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426517
求助须知:如何正确求助?哪些是违规求助? 4540234
关于积分的说明 14171885
捐赠科研通 4458011
什么是DOI,文献DOI怎么找? 2444764
邀请新用户注册赠送积分活动 1435841
关于科研通互助平台的介绍 1413268