Development and validation of an explainable machine learning model for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma: A multi-center study

医学 Lasso(编程语言) 列线图 阶段(地层学) 逻辑回归 颈淋巴结清扫术 队列 特征选择 神秘的 肿瘤科 比例危险模型 内科学 T级 人工智能 放射科 机器学习 癌症 病理 计算机科学 古生物学 替代医学 生物 万维网
作者
Runqiu Zhu,Yan Zhang,Jiayi Zhang,Haonan Yang,Chaobin Pan,Jinghong Li,Renjie Liu,Lianxi Mai,Xiqiang Liu
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (8): 5022-5035 被引量:2
标识
DOI:10.1097/js9.0000000000002641
摘要

Introduction: Due to the high propensity for occult lymph node metastasis (OLNM) in early-stage oral tongue squamous cell carcinoma (OTSCC), elective neck dissection has become standard practice for many patients with clinically node-negative (cT1–2 N0) disease, which may lead to overtreatment in some patients. Hence, accurate identification and prediction of OLNM are of great significance. Aim: This study aimed to develop and validate an explainable machine learning (ML) model to predict OLNM in OTSCC. Methods: A total of 678 early-stage OTSCC patients from multiple centers were enrolled and randomly classified into the derivation and external validation cohorts. The variables considered in this study primarily included clinicopathological characteristics associated with the occurrence of OLNM in OTSCC. Feature selection utilized multivariate logistic regression analysis and Lasso regression analysis. Meanwhile, six ML algorithms were employed to develop an OLNM diagnostic model, assessed with area under the curve (AUC), calibration curve, decision curve analysis, sensitivity, specificity, and validation cohorts. Moreover, the SHapley Additive exPlanation (SHAP) method was applied to rank the feature importance and interpret the final model. Results: In this study, 192 patients (34.7%) developed OLNM in the derivation cohort, while 38 patients (30.6%) developed OLNM in the external validation cohort. Through feature selection, nine clinicopathological variables were identified as independent predictive factors for OLNM, and six ML models were developed based on these factors. Among the six evaluated ML models, the random forest (RF) model achieved the highest AUC (0.941, 95% CI: 0.907–0.975) for internal validation. External validation further confirmed the RF model’s effectiveness, yielding an AUC of 0.917 (95% CI: 0.868–0.967). The calibration curves also demonstrated a high level of concordance between the anticipated risk and the observed risk of the RF model. Additionally, this study compared the RF model with the currently accepted traditional statistical methods, including depth of invasion and tumor budding, demonstrating superior prediction performance and greater clinical application value. Ultimately, an online computing platform (https://prediction-model-for-olnm.streamlit.app/) for this RF model is freely available to both clinicians and patients. Conclusion: This study innovatively utilized nine easily obtained clinicopathological features to construct an explainable RF model, providing a practical and reliable tool for predicting OLNM in early-stage OTSCC. More importantly, it also provided interpretable results, thus overcoming the “impenetrable black box” of conventional ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
Akim应助shi1207863831采纳,获得10
刚刚
刚刚
王纯妍完成签到,获得积分10
1秒前
gtpking发布了新的文献求助10
1秒前
4秒前
4秒前
Woodward完成签到,获得积分10
5秒前
6秒前
无花果应助gtpking采纳,获得10
6秒前
FeiBai发布了新的文献求助10
6秒前
郭濹涵发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
joshua完成签到,获得积分10
12秒前
科研通AI6.1应助lelee采纳,获得20
12秒前
13秒前
发篇四区就收手完成签到 ,获得积分10
13秒前
march应助ZepHyR采纳,获得10
14秒前
16秒前
慕青应助huang采纳,获得10
16秒前
乐乐应助方璇采纳,获得10
17秒前
serein完成签到 ,获得积分10
18秒前
感动凡雁发布了新的文献求助10
19秒前
yufanhui应助yonghu采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
Rocsoar发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
23秒前
初一完成签到 ,获得积分10
25秒前
Bowman发布了新的文献求助30
26秒前
huang完成签到,获得积分10
29秒前
朝暮完成签到 ,获得积分10
30秒前
30秒前
小蘑菇应助古风采纳,获得10
32秒前
SheltonYang发布了新的文献求助10
33秒前
35秒前
活着完成签到,获得积分20
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730846
求助须知:如何正确求助?哪些是违规求助? 5326003
关于积分的说明 15319863
捐赠科研通 4877109
什么是DOI,文献DOI怎么找? 2620078
邀请新用户注册赠送积分活动 1569362
关于科研通互助平台的介绍 1525898