Low-dose CT reconstruction using cross-domain deep learning with domain transfer module

计算机科学 编码器 领域(数学分析) 噪音(视频) 投影(关系代数) 人工智能 迭代重建 深度学习 自编码 算法 图像(数学) 数学 数学分析 操作系统
作者
Yoseob Han
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adb932
摘要

Abstract Objective: X-ray computed tomography employing low-dose X-ray source is actively researched to reduce radiation exposure. However, the reduced photon count in low-dose X-ray sources leads to severe noise artifacts in analytic reconstruction methods like filtered backprojection. Recently, deep learning-based approaches employing uni-domain networks, either in the image-domain or projection-domain, have demonstrated remarkable effectiveness in reducing image noise and Poisson noise caused by low-dose X-ray source. Furthermore, dual-domain networks that integrate image-domain and projection-domain networks are being developed to surpass the performance of uni-domain networks. Despite this advancement, dual-domain networks require twice the computational resources of uni-domain networks, even though their underlying network architectures are not substantially different.

Approach: The U-Net architecture, a type of Hourglass network, comprises encoder and decoder modules. The encoder extracts meaningful representations from the input data, while the decoder uses these representations to reconstruct the target data. In dual-domain networks, however, encoders and decoders are redundantly utilized due to the sequential use of two networks, leading to increased computational demands. To address this issue, this study proposes a cross-domain deep learning approach that leverages analytical domain transfer functions. These functions enable the transfer of features extracted by an encoder trained in input domain to target domain, thereby reducing redundant computations. The target data is then reconstructed using a decoder trained in the corresponding domain, optimizing resource efficiency without compromising performance.

Main Results: The proposed cross-domain network, comprising a projection-domain encoder and an image-domain decoder, demonstrated effective performance by leveraging the domain transfer function, achieving comparable results with only half the trainable parameters of dual-domain networks. Moreover, the proposed method outperformed conventional iterative reconstruction techniques and existing deep learning approaches in reconstruction quality.

Significance: The proposed network leverages the transfer function to bypass redundant encoder and decoder modules, enabling direct connections between different domains. This approach not only surpasses the performance of dual-domain networks but also significantly reduces the number of required parameters. By facilitating the transfer of primal representations across domains, the method achieves synergistic effects, delivering high quality reconstruction images with reduced radiation doses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助lawang采纳,获得10
1秒前
小蘑菇应助lawang采纳,获得10
1秒前
Jasper应助lawang采纳,获得10
1秒前
酷波er应助lawang采纳,获得100
1秒前
我是老大应助lawang采纳,获得10
1秒前
研友_VZG7GZ应助lawang采纳,获得10
1秒前
李爱国应助kian采纳,获得10
1秒前
善学以致用应助酷炫傲安采纳,获得10
1秒前
1秒前
科研小白发布了新的文献求助10
1秒前
LL发布了新的文献求助10
2秒前
3秒前
了喔啰完成签到,获得积分10
3秒前
小吉发布了新的文献求助10
4秒前
4秒前
4秒前
十次方完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
疯狂的战斗机给疯狂的战斗机的求助进行了留言
5秒前
Mikey完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
Akim应助iuhgnor采纳,获得10
6秒前
刘哈哈完成签到 ,获得积分10
6秒前
云之端完成签到,获得积分10
7秒前
英姑应助李生姜采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
wm发布了新的文献求助10
7秒前
7秒前
7秒前
nicelily完成签到,获得积分20
8秒前
8秒前
CN完成签到,获得积分10
8秒前
子车茗应助bobo采纳,获得20
9秒前
外向妙松发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661