Interpretable deep classification of time series based on class discriminative prototype learning

判别式 人工智能 班级(哲学) 系列(地层学) 计算机科学 机器学习 模式识别(心理学) 深度学习 时间序列 地质学 古生物学
作者
Yupeng Wang,Jianghui Cai,Haifeng Yang,Chenhui Shi,M. Zhang,Jie Wang,Ran Zhang,Xujun Zhao
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:29 (6): 1419-1437
标识
DOI:10.1177/1088467x251319188
摘要

Prototypes help to explain the predictions of deep classification models for time series. However, most models learn prototypes by randomly initializing an uncertain number of low-discriminative prototypes, which may lead to unstable models and unreliable results. To address these issues, we propose a new class D iscriminative P rototype L earning Net work (DPL-Net), which learns an appropriate number of class-discriminative prototypes, thus improving classification performance. Specifically, the proposed P rototype I nitialization M echanism (PIM) introduces a new proximity metric based on the silhouette coefficient and statistical metrics. It facilitates the automatic determination of the class-discriminative prototypes for each class. Then, the encoder layer encodes the prototypes derived from PIM and the input series using one-dimensional convolutional neural networks (1D-CNN). Finally, the prototype classification layer optimizes the prototypes according to the regularization terms, while simultaneously classifying the input sequence based on its similarity to the updated prototypes. The comparison experiments are conducted on 26 UCR datasets compared with 10 baselines. The results show that our proposed approach achieves the best accuracy on 11 datasets. Specifically, our method outperforms PIP, CSSL, and LSS by an average of 16.33%, 9.77% and 5.96% on 22, 14 and 16 datasets, respectively. The interpretability experimental results and the application analysis on spectral data indicate that the learned prototypes can provide reasonable explanations for the classification results of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的不弱完成签到,获得积分10
刚刚
沦落而发布了新的文献求助10
1秒前
脑洞疼应助一点采纳,获得10
1秒前
科研通AI6应助xiaoliu采纳,获得10
1秒前
科研通AI6应助清爽海云采纳,获得10
3秒前
诚c发布了新的文献求助30
3秒前
3秒前
李爱国应助苏州河采纳,获得10
4秒前
易义德完成签到 ,获得积分10
4秒前
5秒前
标致惋庭发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
雨过无尘发布了新的文献求助10
11秒前
12秒前
田様应助Ly采纳,获得10
12秒前
kobe0842关注了科研通微信公众号
12秒前
小懒猪发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
lsy完成签到,获得积分10
14秒前
细心沛山完成签到,获得积分10
14秒前
哈哈完成签到,获得积分10
14秒前
复成发布了新的文献求助10
14秒前
14秒前
lennon完成签到,获得积分10
15秒前
15秒前
休眠火山完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621197
求助须知:如何正确求助?哪些是违规求助? 4705939
关于积分的说明 14934259
捐赠科研通 4764936
什么是DOI,文献DOI怎么找? 2551495
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746