Deep learning and big data mining for Metal–Organic frameworks with high performance for simultaneous desulfurization and carbon capture

烟气脱硫 吸附 金属有机骨架 碳纤维 化学工程 环境科学 材料科学 化学 工程类 有机化学 复合材料 复合数
作者
Kexin Guan,Fangyi Xu,Xiaoshan Huang,Yu Li,Shuya Guo,Yizhen Situ,Chen You,Jianming Hu,Zili Liu,Hong Liang,Xin Zhu,Yufang Wu,Zhiwei Qiao
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:662: 941-952 被引量:9
标识
DOI:10.1016/j.jcis.2024.02.098
摘要

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal–organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助平常瑛采纳,获得10
2秒前
2秒前
紫罗兰花海完成签到 ,获得积分10
3秒前
未晚发布了新的文献求助10
3秒前
suiyi完成签到,获得积分10
4秒前
RENAISSANCE111完成签到,获得积分10
4秒前
泯珉完成签到,获得积分10
4秒前
草履虫发布了新的文献求助10
7秒前
Kyrie完成签到,获得积分10
8秒前
田様应助RENAISSANCE111采纳,获得10
8秒前
寒冷的咖啡完成签到,获得积分20
8秒前
上官若男应助鹿鹤采纳,获得10
8秒前
刘一安完成签到 ,获得积分10
10秒前
冷酷的格尔曼完成签到,获得积分10
10秒前
rupy发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
阿乐发布了新的文献求助10
15秒前
17秒前
周杰伦4100发布了新的文献求助10
17秒前
深情安青应助aobadong采纳,获得10
17秒前
1z完成签到,获得积分10
18秒前
源源完成签到 ,获得积分10
18秒前
vvvv发布了新的文献求助20
19秒前
慕青应助zxh采纳,获得10
19秒前
20秒前
平常瑛发布了新的文献求助10
21秒前
21秒前
21秒前
勤奋的青易完成签到,获得积分10
22秒前
科研通AI5应助感动的笑翠采纳,获得10
23秒前
大个应助开放穆采纳,获得10
23秒前
iNk应助时刻保持质疑采纳,获得10
23秒前
23秒前
SYLH应助西安浴日光能赵炜采纳,获得10
23秒前
则以发布了新的文献求助10
24秒前
24秒前
nicole完成签到,获得积分10
24秒前
今后应助YUMI采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818711
求助须知:如何正确求助?哪些是违规求助? 3361803
关于积分的说明 10414228
捐赠科研通 3080117
什么是DOI,文献DOI怎么找? 1693738
邀请新用户注册赠送积分活动 814554
科研通“疑难数据库(出版商)”最低求助积分说明 768313