Shooting condition insensitive unmanned aerial vehicle object detection

计算机科学 嵌入 人工智能 编码器 计算机视觉 目标检测 无人机 探测器 自编码 鉴别器 领域(数学分析) 钥匙(锁) 特征(语言学) 不变(物理) 特征学习 深度学习 模式识别(心理学) 电信 数学分析 语言学 哲学 物理 数学 计算机安全 生物 数学物理 遗传学 操作系统
作者
Jie Liu,Jinzong Cui,Mao Ye,Xiatian Zhu,Song Tang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123221-123221 被引量:8
标识
DOI:10.1016/j.eswa.2024.123221
摘要

The increasing use of unmanned aerial vehicle (UAV) devices in diverse fields such as agriculture, surveillance, and aerial photography has led to a significant demand for intelligent object detection. The key is in dealing with unconstrained shooting condition variations (e.g., weather, view, altitude). Previous data augmentation or adversarial learning based methods try to extract shooting condition invariant features, but they are constrained by the large number of combinations of different shooting conditions. To address this limitation, in this work we introduce a novel Language Guided UAV Detection Network Training Method (LGNet), capable of leveraging pre-trained multi-modal representations (e.g., CLIP) as learning structure reference, and as a model-agnostic strategy that can be applied in various detection models. The key idea is to remove language-described domain-specific features from the visual-language feature space, enhancing tolerance to variations in shooting conditions. Concretely, we fine-tune text prompt embedding about shooting condition and feed the fine-tuned text prompt embedding into CLIP-text encoder to obtain more accurate domain-specific features. By aligning the features from the detector backbone with those of the CLIP image encoder, we situate features within a visual-language space, while staying away from language-encoded domain-specific features to be domain-invariant. Extensive experiments demonstrate that LGNet, as a generic training plug-in, boosts the state-of-the-art performance on various base detectors. Specifically, it achieves an increase in the range of 0.9–1.7% in Average Precision (AP) on the UAVDT dataset and 1.0-2.4% on the VisDrone dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助研友_nqBP4Z采纳,获得10
1秒前
2秒前
tianyue完成签到,获得积分10
3秒前
chenpitang关注了科研通微信公众号
3秒前
4秒前
woxiangbiye发布了新的文献求助10
5秒前
发嗲的冬灵完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
wop111应助cssfsa采纳,获得50
7秒前
7秒前
小马甲应助唯手熟尔采纳,获得10
7秒前
吃草草没发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
li完成签到,获得积分10
12秒前
PPP发布了新的文献求助10
12秒前
科研通AI2S应助不安的靖柔采纳,获得30
13秒前
wtp发布了新的文献求助10
16秒前
炙热一凤应助科研通管家采纳,获得20
16秒前
bkagyin应助科研通管家采纳,获得30
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
一叶知秋应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
17秒前
Tourist应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得30
17秒前
Tourist应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
Tourist应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
Tourist应助科研通管家采纳,获得10
17秒前
一叶知秋应助科研通管家采纳,获得10
17秒前
Tourist应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607