Prediction of contact resistance of electrical contact wear using different machine learning algorithms

表面粗糙度 电接点 材料科学 接触电阻 电阻和电导 表面光洁度 人工神经网络 流离失所(心理学) 振幅 机器学习 算法 复合材料 计算机科学 光学 心理学 物理 图层(电子) 心理治疗师
作者
Zhen-bing Cai,Chunlin Li,Lei You,Xudong Chen,Liping He,Zhongqing Cao,Zhinan Zhang
出处
期刊:Friction [Springer Nature]
卷期号:12 (6): 1250-1271 被引量:8
标识
DOI:10.1007/s40544-023-0810-2
摘要

Abstract H62 brass material is one of the important materials in the process of electrical energy transmission and signal transmission, and has excellent performance in all aspects. Since the wear behavior of electrical contact pairs is particularly complex when they are in service, we evaluated the effects of load, sliding velocity, displacement amplitude, current intensity, and surface roughness on the changes in contact resistance. Machine learning (ML) algorithms were used to predict the electrical contact performance of different factors after wear to determine the correlation between different factors and contact resistance. Random forest (RF), support vector regression (SVR) and BP neural network (BPNN) algorithms were used to establish RF, SVR and BPNN models, respectively, and the experimental data were trained and tested. It was proved that BP neural network model could better predict the stable mean resistance of H62 brass alloy after wear. Characteristic analysis shows that the load and current have great influence on the predicted electrical contact properties. The wear behavior of electrical contacts is influenced by factors such as load, sliding speed, displacement amplitude, current intensity, and surface roughness during operation. Machine learning algorithms can predict the electrical contact performance after wear caused by these factors. Experimental results indicate that an increase in load, current, and surface roughness leads to a decrease in stable mean resistance, while an increase in displacement amplitude and frequency results in an increase in stable mean resistance, leading to a decline in electrical contact performance. To reduce testing time and costs and quickly obtain the electrical contact performance of H62 brass alloy after wear caused by different factors, three algorithms (random forest (RF), support vector regression (SVR), and BP neural network (BPNN)) were used to train and test experimental results, resulting in a machine learning model suitable for predicting the stable mean resistance of H62 brass alloy after wear. The prediction results showed that the BPNN model performed better in predicting the electrical contact performance compared to the RF and SVR models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的夜玉完成签到,获得积分10
刚刚
所所应助无尘采纳,获得10
刚刚
刚刚
阿强完成签到,获得积分10
刚刚
郎泽昆发布了新的文献求助200
刚刚
柠觉呢完成签到 ,获得积分10
刚刚
刚刚
xyy发布了新的文献求助10
刚刚
浮游应助康康采纳,获得10
刚刚
1秒前
李lll完成签到,获得积分10
1秒前
SHENLE发布了新的文献求助30
1秒前
小石头发布了新的文献求助10
1秒前
李健应助无奈镜子采纳,获得10
1秒前
1秒前
123123完成签到 ,获得积分20
1秒前
赘婿应助琪琪乐乐采纳,获得10
1秒前
camellia发布了新的文献求助10
1秒前
脑洞疼应助ly采纳,获得10
1秒前
直率依波发布了新的文献求助10
2秒前
2秒前
研友_VZG7GZ应助龙傲天采纳,获得10
2秒前
李千澈完成签到,获得积分20
2秒前
Lucas应助果粒多采纳,获得10
3秒前
DDD完成签到,获得积分10
3秒前
ZJU发布了新的文献求助10
3秒前
谁谁发布了新的文献求助10
4秒前
4秒前
KK应助all采纳,获得10
5秒前
沈尔云完成签到,获得积分10
5秒前
Struggle发布了新的文献求助10
5秒前
科研通AI5应助碧蓝皮卡丘采纳,获得10
5秒前
Rick应助qing采纳,获得10
5秒前
今天发CNS了嘛完成签到,获得积分10
5秒前
5秒前
雪花发布了新的文献求助10
5秒前
粥游天下完成签到,获得积分10
6秒前
专一的新之完成签到 ,获得积分10
6秒前
tw007007完成签到,获得积分10
6秒前
curie应助文件撤销了驳回
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571894
求助须知:如何正确求助?哪些是违规求助? 3992835
关于积分的说明 12360166
捐赠科研通 3666002
什么是DOI,文献DOI怎么找? 2020406
邀请新用户注册赠送积分活动 1054687
科研通“疑难数据库(出版商)”最低求助积分说明 942208