On predictive models for the equivalent sand grain roughness for wall-bounded turbulent flows

表面光洁度 表面粗糙度 阻力 湍流 偏斜 机械 粗糙度长度 有界函数 物理 数学分析 几何学 统计物理学 数学 气象学 统计 材料科学 热力学 复合材料 风速 风廓线幂律
作者
Misarah Abdelaziz,L. Djenidi,Mergen H. Ghayesh,Rey Chin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:9
标识
DOI:10.1063/5.0178798
摘要

One of the long-standing goals of rough wall fluid dynamics research is to determine the drag penalty of surfaces based solely on their topographical parameters. The most important length scale or roughness parameter that best describes a surface in relation to friction drag has not been agreed upon yet, despite the many studies that, over the years, have attempted to identify the most appropriate surface parameter. The concept of an equivalent sand-grain roughness (ks) was introduced to standardize different types of roughness in wall-bounded turbulence, serving as an input parameter for predicting the roughness function ΔU+. To anticipate ΔU+ generated by a rough surface under turbulent flow conditions, experts use roughness correlations that establish a correspondence between the topographical characteristics of the surface and ks. Therefore, a chronological compilation of roughness correlations is presented, detailing the parameter ranges and types of roughness used in their development. This study evaluates the effectiveness of predictive correlation functions and aims to formulate a universal function by exploring a comprehensive assortment of three-dimensional (3D) surface textures available in the literature. The results suggest that a correlation based on surface height skewness (ksk) and streamwise effective slope (ESx) can predict the ratio (ks/kq), where kq is the root mean square roughness height for 3D roughness in the fully rough regime. Despite the fact that the correlation is restricted to 3D surface roughness, which is a more realistic representation, the model demonstrated a high level of accuracy in predicting ks for over 120 distinct rough surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北方发布了新的文献求助10
1秒前
帅气的plum发布了新的文献求助10
1秒前
3秒前
勤恳安彤发布了新的文献求助10
3秒前
今后应助song采纳,获得30
4秒前
ccczzz应助细腻怜翠采纳,获得20
4秒前
NexusExplorer应助SWEETYXY采纳,获得10
4秒前
NGU关闭了NGU文献求助
5秒前
nnl完成签到,获得积分10
6秒前
george完成签到,获得积分10
7秒前
小张完成签到,获得积分10
7秒前
7秒前
轻舟发布了新的文献求助10
9秒前
觅柔完成签到 ,获得积分10
9秒前
浮游应助LantyLiao采纳,获得10
10秒前
10秒前
田様应助白智妍采纳,获得10
11秒前
赘婿应助Espoir采纳,获得10
11秒前
13秒前
lhy发布了新的文献求助10
14秒前
风趣尔冬发布了新的文献求助10
14秒前
15秒前
万能图书馆应助如风随水采纳,获得10
15秒前
15秒前
16秒前
神勇惜筠完成签到,获得积分10
17秒前
Jin完成签到,获得积分10
17秒前
Huang_being发布了新的文献求助10
17秒前
研友_Zlx3aZ完成签到,获得积分10
19秒前
小张发布了新的文献求助10
19秒前
20秒前
汉堡包应助南南采纳,获得10
20秒前
胡兴发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
zz完成签到 ,获得积分10
23秒前
23秒前
一只膨胀的猪完成签到,获得积分10
23秒前
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208491
求助须知:如何正确求助?哪些是违规求助? 4386000
关于积分的说明 13659449
捐赠科研通 4244993
什么是DOI,文献DOI怎么找? 2329043
邀请新用户注册赠送积分活动 1326831
关于科研通互助平台的介绍 1279056