清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploration and validation of key genes associated with early lymph node metastasis in thyroid carcinoma using weighted gene co-expression network analysis and machine learning

计算机科学 支持向量机 计算生物学 Lasso(编程语言) 生物信息学 生物 生物信息学 人工智能 基因 生物化学 万维网
作者
Yanyan Liu,Zhenglang Yin,Yao Wang,Haohao Chen
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:14 被引量:13
标识
DOI:10.3389/fendo.2023.1247709
摘要

Background Thyroid carcinoma (THCA), the most common endocrine neoplasm, typically exhibits an indolent behavior. However, in some instances, lymph node metastasis (LNM) may occur in the early stages, with the underlying mechanisms not yet fully understood. Materials and methods LNM potential was defined as the tumor’s capability to metastasize to lymph nodes at an early stage, even when the tumor volume is small. We performed differential expression analysis using the ‘Limma’ R package and conducted enrichment analyses using the Metascape tool. Co-expression networks were established using the ‘WGCNA’ R package, with the soft threshold power determined by the ‘pickSoftThreshold’ algorithm. For unsupervised clustering, we utilized the ‘ConsensusCluster Plus’ R package. To determine the topological features and degree centralities of each node (protein) within the Protein-Protein Interaction (PPI) network, we used the CytoNCA plugin integrated with the Cytoscape tool. Immune cell infiltration was assessed using the Immune Cell Abundance Identifier (ImmuCellAI) database. We applied the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM), and Random Forest (RF) algorithms individually, with the ‘glmnet,’ ‘e1071,’ and ‘randomForest’ R packages, respectively. Ridge regression was performed using the ‘oncoPredict’ algorithm, and all the predictions were based on data from the Genomics of Drug Sensitivity in Cancer (GDSC) database. To ascertain the protein expression levels and subcellular localization of genes, we consulted the Human Protein Atlas (HPA) database. Molecular docking was carried out using the mcule 1-click Docking server online. Experimental validation of gene and protein expression levels was conducted through Real-Time Quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) assays. Results Through WGCNA and PPI network analysis, we identified twelve hub genes as the most relevant to LNM potential from these two modules. These 12 hub genes displayed differential expression in THCA and exhibited significant correlations with the downregulation of neutrophil infiltration, as well as the upregulation of dendritic cell and macrophage infiltration, along with activation of the EMT pathway in THCA. We propose a novel molecular classification approach and provide an online web-based nomogram for evaluating the LNM potential of THCA ( http://www.empowerstats.net/pmodel/?m=17617_LNM ). Machine learning algorithms have identified ERBB3 as the most critical gene associated with LNM potential in THCA. ERBB3 exhibits high expression in patients with THCA who have experienced LNM or have advanced-stage disease. The differential methylation levels partially explain this differential expression of ERBB3. ROC analysis has identified ERBB3 as a diagnostic marker for THCA (AUC=0.89), THCA with high LNM potential (AUC=0.75), and lymph nodes with tumor metastasis (AUC=0.86). We have presented a comprehensive review of endocrine disruptor chemical (EDC) exposures, environmental toxins, and pharmacological agents that may potentially impact LNM potential. Molecular docking revealed a docking score of -10.1 kcal/mol for Lapatinib and ERBB3, indicating a strong binding affinity. Conclusion In conclusion, our study, utilizing bioinformatics analysis techniques, identified gene modules and hub genes influencing LNM potential in THCA patients. ERBB3 was identified as a key gene with therapeutic implications. We have also developed a novel molecular classification approach and a user-friendly web-based nomogram tool for assessing LNM potential. These findings pave the way for investigations into the mechanisms underlying differences in LNM potential and provide guidance for personalized clinical treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小莫完成签到 ,获得积分10
6秒前
徐涛完成签到 ,获得积分10
7秒前
大水完成签到 ,获得积分10
20秒前
Fiona完成签到 ,获得积分10
22秒前
景妙海完成签到 ,获得积分10
24秒前
迅速的幻雪完成签到 ,获得积分10
26秒前
natsu401完成签到 ,获得积分10
26秒前
28秒前
无幻完成签到 ,获得积分10
34秒前
tyfelix发布了新的文献求助10
34秒前
ycool完成签到 ,获得积分10
39秒前
dreamer完成签到 ,获得积分10
43秒前
开霁完成签到 ,获得积分10
52秒前
allrubbish完成签到,获得积分10
1分钟前
shyの煜完成签到 ,获得积分10
1分钟前
Hans完成签到,获得积分10
1分钟前
1分钟前
板栗发布了新的文献求助10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
NexusExplorer应助板栗采纳,获得10
1分钟前
搜集达人应助tyfelix采纳,获得10
1分钟前
lingling完成签到 ,获得积分10
1分钟前
蒲蒲完成签到 ,获得积分10
1分钟前
丝丢皮得完成签到 ,获得积分10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
小程完成签到 ,获得积分10
2分钟前
桐桐应助Chen采纳,获得10
2分钟前
好好好完成签到 ,获得积分10
2分钟前
LJ_2完成签到 ,获得积分10
3分钟前
春日奶黄包完成签到 ,获得积分10
3分钟前
甜乎贝贝完成签到 ,获得积分10
3分钟前
科研临床两手抓完成签到 ,获得积分10
3分钟前
3分钟前
雍州小铁匠完成签到 ,获得积分10
3分钟前
Xieyusen发布了新的文献求助10
3分钟前
安详的曲奇完成签到,获得积分10
3分钟前
Xieyusen完成签到,获得积分10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244272
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541