ESKNet: An enhanced adaptive selection kernel convolution for ultrasound breast tumors segmentation

雅卡索引 分割 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 核(代数) 精确性和召回率 深度学习 特征(语言学) 乳腺超声检查 乳腺癌 医学 数学 癌症 乳腺摄影术 哲学 内科学 组合数学 语言学
作者
Gongping Chen,Lu Zhou,Jianxun Zhang,Xiaotao Yin,Liang Cui,Yu Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123265-123265 被引量:12
标识
DOI:10.1016/j.eswa.2024.123265
摘要

Breast cancer has become one of the most dreaded diseases that can threaten the life of any woman. Accurate target lesion segmentation is essential for early clinical intervention and postoperative follow-up. Recently, many convolutional neural networks (CNNs) for segmenting breast tumors from ultrasound images have been presented. However, the complex ultrasound pattern and the variable tumor shape and size bring challenges to the accurate segmentation of the breast lesion. Motivated by the selective kernel convolution, we introduce an enhanced selective kernel convolution for breast tumor segmentation, which integrates multiple feature map region representations and adaptively recalibrates the weights of these feature map regions from the channel and spatial dimensions. This region recalibration strategy enables the network to focus more on high-contributing region features and mitigate the perturbation of less useful regions. Finally, the enhanced selective kernel convolution is integrated into U-net with deep supervision constraints to adaptively capture the robust representation of breast tumors. Using three public breast ultrasound datasets, we conducted extensive experiments with many state-of-the-art deep learning segmentation methods. In the segmentation of the first ultrasound dataset (BUSI), the values of Jaccard, Precision, Recall, Specificity and Dice are 70.20%, 79.57%, 82.41%, 97.47% and 78.71%, respectively. The values of Jaccard, Precision, Recall, Specificity and Dice for our method on the second ultrasound dataset (Dataset B) are 71.65%, 81.01%, 82.66%, 99.01% and 79.92%, respectively. For the segmentation of external ultrasound dataset (STU), the mean values of Jaccard, Precision, Recall, Specificity and Dice are 75.14%, 84.73%, 89.25%, 97.53% and 84.76%, respectively. The experimental results fully demonstrate the superior performance of our method for segmenting breast ultrasound images. The source code is available on the following website: https://github.com/CGPxy/ESKNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
搞怪故事发布了新的文献求助10
3秒前
澳洲小肥牛完成签到,获得积分10
4秒前
4秒前
筱筱完成签到,获得积分10
5秒前
二十八画生完成签到 ,获得积分10
6秒前
6秒前
温暖的鸿完成签到 ,获得积分10
6秒前
Owen应助浅梦星河采纳,获得10
6秒前
安详的梦旋完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
激动的小海豚完成签到,获得积分10
8秒前
大腚疯猪应助毛毛采纳,获得20
10秒前
周小鱼发布了新的文献求助20
10秒前
Axe发布了新的文献求助10
11秒前
AmbitionY完成签到,获得积分10
11秒前
我是老大应助知犯何逆采纳,获得10
12秒前
我是老大应助薛萌采纳,获得10
12秒前
12秒前
13秒前
古木完成签到,获得积分10
14秒前
14秒前
14秒前
GAC完成签到 ,获得积分10
14秒前
xio完成签到,获得积分20
14秒前
王楷楷完成签到,获得积分20
14秒前
永远在完成签到,获得积分20
15秒前
潇洒的老头完成签到,获得积分10
15秒前
科研通AI2S应助陈皮采纳,获得10
16秒前
17秒前
Axe完成签到,获得积分10
19秒前
子车谷波发布了新的文献求助30
19秒前
欧耶欧椰发布了新的文献求助10
21秒前
华仔应助cc采纳,获得10
24秒前
aabsd完成签到,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796600
求助须知:如何正确求助?哪些是违规求助? 3341803
关于积分的说明 10307908
捐赠科研通 3058398
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805919
科研通“疑难数据库(出版商)”最低求助积分说明 762841