已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Understanding college students’ cognitive engagement in online collaborative problem-solving: A multimodal data analysis

心理学 认知 任务(项目管理) 学生参与度 数学教育 在线讨论 计算机科学 万维网 工程类 神经科学 系统工程
作者
Hengtao Tang,Miao Dai,Xu Du,Jui-Long Hung,Hao Li
出处
期刊:Distance Education [Informa]
卷期号:44 (2): 306-323 被引量:22
标识
DOI:10.1080/01587919.2023.2209025
摘要

AbstractLaboratory experience is critical to foster college students' collaborative problem-solving (CPS) abilities, but whether students stay cognitively engaged in CPS tasks during online laboratory sessions remains unknown. This study applied multimodal data analysis to examine college students' (N = 36) cognitive engagement in CPS during their online experimentation experience. Groups of three collaborated on CPS tasks via shared worksheets and computer-based simulations on videoconferences. Portable electroencephalogram instruments were used to determine students' levels of cognitive engagement in CPS activities. The multimodal data analysis (e.g., electroencephalogram, surveys, and artifacts) results showed a significant difference in students' cognitive engagement between different phases of CPS. The students' cognitive engagement significantly differed between groups who did and did not complete the task. Additionally, intrinsic motivation predicted students' cognitive engagement in the completion groups while self-efficacy was the primary predictor of cognitive engagement for the groups who did not complete the task.Keywords: collaborative problem-solvingmultimodal analyticselectroencephalogramcognitive engagementonlinepost-pandemic Disclosure statementNo potential conflict of interest was declared by the author(s).Data availability statementThe data that support the findings of this study is available from Miao Dai and Xu Du upon reasonable request.Additional informationFundingThis paper was supported by the National Key R&D Program of China (2021ZD0110702) and the National Science Foundation of China (61937001, 62177020) awarded to Xu Du.Notes on contributorsHengtao TangHengtao Tang is an assistant professor in the Department of Educational Studies at the University of South Carolina. His research interests include learning analytics; self-regulated learning; science, technology, engineering, and mathematics education; and open educational resources.Miao DaiMiao Dai is a PhD candidate at Central China Normal University, China. Her research interests include machine learning, deep learning, and educational data mining.Xu DuXu Du is currently a professor in the National Engineering Research Center for E-Learning at Central China Normal University, China. His research interests include smart environment and mobile learning, resource scheduling and recommendation, machine learning, and educational data miningJui-Long HungJui-Long Hung is a professor in the Department of Educational Technology, Boise State University and a researcher in the National Engineering Laboratory for Educational Big Data, Central China Normal University. His research interests include educational data and text mining and learning analytics.Hao LiHao Li is an associate professor in the National Engineering Research Center for E-Learning at Central China Normal University, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助ceeray23采纳,获得20
1秒前
胖胖糖完成签到,获得积分10
1秒前
2秒前
2秒前
拼搏的萧完成签到 ,获得积分10
2秒前
5秒前
俊逸荷花关注了科研通微信公众号
5秒前
在水一方应助顺利的耶采纳,获得10
8秒前
lysenko完成签到 ,获得积分10
9秒前
天狼完成签到,获得积分10
10秒前
13秒前
13秒前
情怀应助无敌大裤衩采纳,获得10
18秒前
研友_nvGy2Z发布了新的文献求助10
18秒前
reine_yu发布了新的文献求助10
18秒前
19秒前
22秒前
小小怪完成签到 ,获得积分10
23秒前
深情的羞花完成签到 ,获得积分10
23秒前
隐形曼青应助小杨采纳,获得10
23秒前
24秒前
25秒前
赵子龙完成签到,获得积分10
26秒前
阿囡湖完成签到,获得积分10
26秒前
27秒前
28秒前
reine_yu完成签到,获得积分20
28秒前
俊逸荷花发布了新的文献求助10
28秒前
28秒前
可爱的函函应助fighting采纳,获得10
28秒前
Qwer完成签到 ,获得积分10
29秒前
阿囡湖发布了新的文献求助10
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
tzj完成签到,获得积分10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
Jasper应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
马尔扎哈发布了新的文献求助10
31秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385100
求助须知:如何正确求助?哪些是违规求助? 4507800
关于积分的说明 14028997
捐赠科研通 4417585
什么是DOI,文献DOI怎么找? 2426609
邀请新用户注册赠送积分活动 1419298
关于科研通互助平台的介绍 1397675