How Good Are Current Docking Programs at Nucleic Acid–Ligand Docking? A Comprehensive Evaluation

对接(动物) 自动停靠 蛋白质-配体对接 码头 寻找对接的构象空间 配体(生物化学) 药物发现 计算生物学 化学 结合位点 小分子 核酸 立体化学 组合化学 计算机科学 虚拟筛选 生物化学 生物 生物信息学 受体 基因 医学 护理部
作者
Dejun Jiang,Huifeng Zhao,Hongyan Du,Yafeng Deng,Zhenhua Wu,Jike Wang,Yundian Zeng,Haotian Zhang,Xiaorui Wang,Jian Wu,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (16): 5633-5647 被引量:32
标识
DOI:10.1021/acs.jctc.3c00507
摘要

Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
打打应助晓磊采纳,获得10
1秒前
1秒前
2秒前
Sansan.完成签到,获得积分10
2秒前
2秒前
3秒前
又晴发布了新的文献求助10
3秒前
wwwww123完成签到,获得积分10
3秒前
4秒前
含蓄绿兰发布了新的文献求助10
4秒前
4秒前
4秒前
充电宝应助流水采纳,获得30
5秒前
5秒前
平常盼易完成签到,获得积分20
5秒前
6秒前
6秒前
xxx11完成签到,获得积分10
6秒前
7秒前
我嘞个豆发布了新的文献求助10
7秒前
kyf1993发布了新的文献求助10
7秒前
木棉完成签到,获得积分10
8秒前
烽火残心发布了新的文献求助10
8秒前
shaw发布了新的文献求助10
8秒前
粗犷的雨梅关注了科研通微信公众号
8秒前
良辰发布了新的文献求助10
8秒前
小西发布了新的文献求助10
9秒前
领导范儿应助7777采纳,获得10
9秒前
学学学天天学完成签到,获得积分10
10秒前
ltc发布了新的文献求助10
10秒前
yaoyao发布了新的文献求助10
10秒前
Mia发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
顾矜应助颀一一采纳,获得10
11秒前
廿伊发布了新的文献求助10
12秒前
慕青应助阳光青旋采纳,获得30
12秒前
Hello应助佳期采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189