How Good Are Current Docking Programs at Nucleic Acid–Ligand Docking? A Comprehensive Evaluation

对接(动物) 自动停靠 蛋白质-配体对接 码头 寻找对接的构象空间 配体(生物化学) 药物发现 计算生物学 化学 结合位点 小分子 核酸 立体化学 组合化学 计算机科学 虚拟筛选 生物化学 生物 生物信息学 受体 医学 护理部 基因
作者
Dejun Jiang,Haijian Zhao,Hongyan Du,Yafeng Deng,Zhenxing Wu,Jike Wang,Yiyu Zeng,Haotian Zhang,Xiaorui Wang,Jian Wu,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (16): 5633-5647 被引量:6
标识
DOI:10.1021/acs.jctc.3c00507
摘要

Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wxxxxx完成签到 ,获得积分10
刚刚
英勇的半兰完成签到 ,获得积分10
1秒前
lilia完成签到,获得积分10
1秒前
鲤鱼青雪完成签到,获得积分10
3秒前
sssssssssss完成签到,获得积分10
3秒前
4秒前
hhh发布了新的文献求助10
4秒前
彪壮的亦瑶完成签到 ,获得积分10
4秒前
LINHAI完成签到,获得积分10
4秒前
乐乐应助渡劫采纳,获得10
4秒前
柠檬加冰发布了新的文献求助10
5秒前
痴情的翠桃完成签到,获得积分10
6秒前
All完成签到,获得积分10
7秒前
小科完成签到,获得积分10
8秒前
Hui完成签到,获得积分10
8秒前
math完成签到,获得积分10
9秒前
10秒前
小小怪发布了新的文献求助30
11秒前
11完成签到,获得积分10
11秒前
尼斯卡完成签到,获得积分10
11秒前
科研通AI5应助迅速向日葵采纳,获得10
12秒前
Twinkle完成签到,获得积分10
12秒前
13秒前
现代宝宝完成签到,获得积分10
13秒前
Lucas完成签到,获得积分10
13秒前
bettersy完成签到,获得积分10
14秒前
hhh完成签到,获得积分10
14秒前
丹阳阳完成签到,获得积分10
14秒前
lw完成签到,获得积分10
14秒前
licheng完成签到,获得积分10
15秒前
上山石头完成签到,获得积分10
15秒前
hhh完成签到,获得积分10
16秒前
16秒前
南国完成签到,获得积分10
16秒前
wanghua完成签到,获得积分10
17秒前
18秒前
迷路凌柏完成签到 ,获得积分10
19秒前
胖九完成签到,获得积分10
21秒前
淡定之玉完成签到 ,获得积分10
22秒前
霜月十四完成签到,获得积分10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837609
求助须知:如何正确求助?哪些是违规求助? 3379759
关于积分的说明 10510349
捐赠科研通 3099361
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615