已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interaction-Aware Planning With Deep Inverse Reinforcement Learning for Human-Like Autonomous Driving in Merge Scenarios

计算机科学 强化学习 合并(版本控制) 人工智能 人机交互 情报检索
作者
Jiangfeng Nan,Weiwen Deng,Ruzheng Zhang,Ying Wang,Rui Zhao,Juan Ding
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2714-2726 被引量:9
标识
DOI:10.1109/tiv.2023.3298912
摘要

Merge scenarios on highway are often challenging for autonomous driving, due to its lack of sufficient tacit understanding on and subtle interaction with human drivers in the traffic flow. This, as a result, may impose serious safety risks, and often cause traffic jam with autonomous driving. Therefore, human-like autonomous driving becomes important, yet imperative. This paper presents an interaction-aware decision-making and planning method for human-like autonomous driving in merge scenarios. Rather than directly mimicking human behavior, deep inverse reinforcement learning is employed to learn the human-used reward function for decision-making and planning from naturalistic driving data to enhance interpretability and generalizability. To consider the interaction factor, the reward function for planning is utilized to evaluate the joint trajectories of the autonomous driving vehicle (ADV) and traffic vehicles. In contrast to predicting trajectories of traffic vehicles with the fixed trajectory of ADV given by the upstream prediction model, the trajectories of traffic vehicles are predicted by responding to the ADV's behavior in this paper. Additionally, the decision-making module is employed to reduce the solution space of planning via the selection of a proper gap for merging. Both the decision-making and planning algorithms follow a "sampling, evaluation, and selection" framework. After being verified through experiments, the results indicate that the planned trajectories with the presented method are highly similar to those of human drivers. Moreover, compared to the interaction-unaware planning method, the interaction-aware planning method behaves closer to human drivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhizhi完成签到 ,获得积分10
刚刚
xiajiahao发布了新的文献求助10
刚刚
碳酸氢钠完成签到,获得积分10
刚刚
味精发布了新的文献求助10
1秒前
Raven应助柒柒采纳,获得10
1秒前
邱晨凯发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI2S应助Jane采纳,获得10
4秒前
4秒前
田様应助ywhys采纳,获得10
5秒前
7秒前
sllytn完成签到 ,获得积分10
7秒前
7秒前
zxf发布了新的文献求助10
9秒前
10秒前
10秒前
涛123完成签到 ,获得积分10
10秒前
10秒前
所所应助佘余采纳,获得20
11秒前
11秒前
11秒前
小王发布了新的文献求助10
12秒前
FashionBoy应助shengchang88采纳,获得10
12秒前
14秒前
谦让寒云完成签到 ,获得积分10
14秒前
谦让蛋挞发布了新的文献求助10
14秒前
张环完成签到,获得积分10
17秒前
Nemo完成签到,获得积分10
17秒前
Jenkin发布了新的文献求助10
18秒前
18秒前
vigour发布了新的文献求助10
19秒前
20秒前
New完成签到,获得积分10
20秒前
佘余完成签到,获得积分10
21秒前
21秒前
23秒前
不要引力发布了新的文献求助10
24秒前
24秒前
佘余发布了新的文献求助20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312441
求助须知:如何正确求助?哪些是违规求助? 4456140
关于积分的说明 13865543
捐赠科研通 4344617
什么是DOI,文献DOI怎么找? 2385967
邀请新用户注册赠送积分活动 1380304
关于科研通互助平台的介绍 1348703