Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers

钢筋混凝土 结构工程 材料科学 纤维增强塑料 纤维 聚合物 计算机科学 复合材料 工程类
作者
Farzin Kazemi,Neda Asgarkhani,Torkan Shafighfard,Robert Jankowski,Doo‐Yeol Yoo
出处
期刊:Archives of Computational Methods in Engineering [Springer Nature]
卷期号:32 (1): 571-603 被引量:80
标识
DOI:10.1007/s11831-024-10143-1
摘要

Abstract In recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for assessing their suitability incur significant time and cost. The emergence of Industry 4.0 has presented opportunities to address these drawbacks by leveraging machine learning (ML) methods. ML techniques have recently been used to forecast the properties and assess the importance of process parameters for efficient structural design and their broad applications. Given their wide range of applications, this work aims to perform a comprehensive analysis of ML algorithms used for predicting the mechanical properties of FRPs. The performance evaluation of various models was discussed, and a detailed analysis of their pros and cons was provided. Finally, the limitations that currently exist in these techniques were pinpointed, and suggestions were given to improve their prediction precision suitable for evaluating the mechanical properties of FRP components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维奈克拉应助jocelyn采纳,获得20
1秒前
1秒前
科研通AI6应助侯_采纳,获得10
3秒前
虫虫发布了新的文献求助10
6秒前
科研通AI6应助童童采纳,获得10
6秒前
6秒前
7秒前
xiaoxixiccccc发布了新的文献求助10
10秒前
玄梓寒完成签到 ,获得积分10
11秒前
11秒前
13秒前
小辣椒发布了新的文献求助10
13秒前
侯_发布了新的文献求助10
16秒前
19秒前
李天王发布了新的文献求助10
19秒前
言论完成签到,获得积分10
19秒前
20秒前
柚子完成签到 ,获得积分10
20秒前
CA关闭了CA文献求助
21秒前
慕青应助健忘的紫烟采纳,获得10
21秒前
24秒前
霜糖完成签到,获得积分10
25秒前
柚子关注了科研通微信公众号
28秒前
斯文败类应助小辣椒采纳,获得10
28秒前
30秒前
31秒前
33秒前
34秒前
橙子是不是完成签到,获得积分10
36秒前
烟花应助vegetable采纳,获得10
36秒前
Yung关注了科研通微信公众号
42秒前
小二郎应助nene采纳,获得10
43秒前
44秒前
DEUX完成签到,获得积分10
45秒前
鲨鱼小乐完成签到,获得积分10
48秒前
48秒前
49秒前
ivying0209发布了新的文献求助10
50秒前
50秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915