Physics-informed data-driven discovery of constitutive models with application to strain-rate-sensitive soft materials

本构方程 拉伤 应变率 材料科学 统计物理学 计算机科学 生物 物理 有限元法 热力学 复合材料 解剖
作者
Kshitiz Upadhyay,Jan N. Fuhg,Nikolaos Bouklas,K.T. Ramesh
出处
期刊:Computational Mechanics [Springer Nature]
被引量:19
标识
DOI:10.1007/s00466-024-02497-x
摘要

Abstract A novel data-driven constitutive modeling approach is proposed, which combines the physics-informed nature of modeling based on continuum thermodynamics with the benefits of machine learning. This approach is demonstrated on strain-rate-sensitive soft materials. This model is based on the viscous dissipation-based visco-hyperelasticity framework where the total stress is decomposed into volumetric, isochoric hyperelastic, and isochoric viscous overstress contributions. It is shown that each of these stress components can be written as linear combinations of the components of an irreducible integrity basis. Three Gaussian process regression-based surrogate models are trained (one per stress component) between principal invariants of strain and strain rate tensors and the corresponding coefficients of the integrity basis components. It is demonstrated that this type of model construction enforces key physics-based constraints on the predicted responses: the second law of thermodynamics, the principles of local action and determinism, objectivity, the balance of angular momentum, an assumed reference state, isotropy, and limited memory. The three surrogate models that constitute our constitutive model are evaluated by training them on small-size numerically generated data sets corresponding to a single deformation mode and then analyzing their predictions over a much wider testing regime comprising multiple deformation modes. Our physics-informed data-driven constitutive model predictions are compared with the corresponding predictions of classical continuum thermodynamics-based and purely data-driven models. It is shown that our surrogate models can reasonably capture the stress–strain-strain rate responses in both training and testing regimes and improve prediction accuracy, generalizability to multiple deformation modes, and compatibility with limited data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实火完成签到,获得积分10
刚刚
3秒前
ding应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
大龙哥886应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
Ava应助xiaofenzi采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
老福贵儿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
解语花发布了新的文献求助10
5秒前
ljl86400完成签到,获得积分10
9秒前
乘风文月发布了新的文献求助30
9秒前
11秒前
英俊青旋完成签到 ,获得积分10
11秒前
15秒前
wwwww完成签到,获得积分10
20秒前
feiyang发布了新的文献求助10
21秒前
高景行完成签到 ,获得积分10
21秒前
houshyari完成签到,获得积分10
24秒前
北过完成签到,获得积分10
26秒前
丘比特应助feiyang采纳,获得10
26秒前
AA18236931952发布了新的文献求助10
27秒前
27秒前
乘风文月完成签到,获得积分10
31秒前
橘子洲完成签到 ,获得积分10
32秒前
marvinvin发布了新的文献求助10
32秒前
jun完成签到,获得积分10
33秒前
Micheal完成签到,获得积分10
34秒前
lyz完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523