Reservoir Discrimination Based on Physic-Informed Semi-Supervised Learning

计算机科学 人工智能 遥感 地质学 机器学习
作者
Lei Song,Xingyao Yin,Ran Zhang,Jinpeng Li,Jiale Zhang,Jiayun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2024.3409578
摘要

Accurate and stable identification of oil and gas reservoirs based on seismic data can effectively improve exploration success rates, enhance production efficiency, and reduce exploration and development costs. Limited by uncertainties in seismic data and inadequate label samples, problems of overfitting and instability generally exist in current deep-learning reservoir discrimination studies. A semi-supervised physics-informed workflow for reservoir discrimination is herein proposed. The approach synthesizes rock physics theory, elastic forward modeling, prior geological information, and deep learning algorithms. Furthermore, to establish a connection between seismic data and reservoir types, a geofluid parameter is employed, selected for its sensitivity to oil and gas reservoirs and its reliable extraction from seismic data. Accordingly, the reservoir classification network, geofluid inversion network, and elastic forward network are designed to complete the reservoir prediction cooperatively with a task-decomposed strategy. Finally, the established networks are optimized based on the constructed "seismic-geofluid-reservoir" training dataset with the proposed multi-step cooperative semi-supervised training strategy, which can improve the learning ability of the model by capturing explicit physics knowledge from labeled data, mining implicit knowledge from massive unlabeled data, and incorporating geophysics domain knowledge simultaneously. The proposed reservoir discrimination workflow is successfully applied to a field survey. The precision, recall, and f1-score of the predicted gas reservoirs can reach about 55%, 84%, and 67%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕_完成签到 ,获得积分10
1秒前
2秒前
苹果骑士完成签到,获得积分10
3秒前
嘻嘻哈哈发布了新的文献求助70
5秒前
wlscj给哈哈哈的求助进行了留言
5秒前
小超发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助10
6秒前
李安全完成签到,获得积分10
7秒前
HaHa完成签到,获得积分10
10秒前
11秒前
lii完成签到,获得积分10
11秒前
15秒前
yoyo完成签到 ,获得积分10
15秒前
guyuangyy完成签到,获得积分10
16秒前
英俊的胜发布了新的文献求助10
16秒前
谭访冬发布了新的文献求助10
17秒前
guantlv完成签到,获得积分10
18秒前
小通通完成签到 ,获得积分10
18秒前
搜集达人应助研友_85YNe8采纳,获得30
19秒前
文献就着酒灵感如泉涌完成签到,获得积分10
22秒前
24秒前
谭访冬完成签到,获得积分10
25秒前
27秒前
优雅的WAN完成签到 ,获得积分10
27秒前
sa0022完成签到,获得积分10
29秒前
迅速大山发布了新的文献求助10
32秒前
dididi完成签到 ,获得积分10
33秒前
wintersss发布了新的文献求助10
33秒前
yhhhs完成签到 ,获得积分10
33秒前
yqt完成签到,获得积分10
36秒前
欢喜可愁完成签到 ,获得积分10
36秒前
无辜的行云完成签到 ,获得积分0
41秒前
wanci应助迅速大山采纳,获得10
42秒前
李爱国应助logo采纳,获得10
44秒前
木木完成签到 ,获得积分10
44秒前
深情安青应助老实敏采纳,获得10
45秒前
zzz完成签到,获得积分10
45秒前
zzz完成签到,获得积分10
46秒前
木头人完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294096
求助须知:如何正确求助?哪些是违规求助? 4444039
关于积分的说明 13832022
捐赠科研通 4328044
什么是DOI,文献DOI怎么找? 2375902
邀请新用户注册赠送积分活动 1371202
关于科研通互助平台的介绍 1336276