Plant disease management: a fine-tuned enhanced CNN approach with mobile app integration for early detection and classification

计算机科学 移动应用程序 人工智能 实时计算 万维网
作者
Mudassir Iftikhar,Irfan Ali Kandhro,Neha Kausar,Asadullah Kehar,Mueen Uddin,Abdulhalim Dandoush
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:57 (7) 被引量:26
标识
DOI:10.1007/s10462-024-10809-z
摘要

Abstract Farmers face the formidable challenge of meeting the increasing demands of a rapidly growing global population for agricultural products, while plant diseases continue to wreak havoc on food production. Despite substantial investments in disease management, agriculturists are increasingly turning to advanced technology for more efficient disease control. This paper addresses this critical issue through an exploration of a deep learning-based approach to disease detection. Utilizing an optimized Convolutional Neural Network (E-CNN) architecture, the study concentrates on the early detection of prevalent leaf diseases in Apple, Corn, and Potato crops under various conditions. The research conducts a thorough performance analysis, emphasizing the impact of hyperparameters on plant disease detection across these three distinct crops. Multiple machine learning and pre-trained deep learning models are considered, comparing their performance after fine-tuning their parameters. Additionally, the study investigates the influence of data augmentation on detection accuracy. The experimental results underscore the effectiveness of our fine-tuned enhanced CNN model, achieving an impressive 98.17% accuracy in fungal classes. This research aims to pave the way for more efficient plant disease management and, ultimately, to enhance agricultural productivity in the face of mounting global challenges. To improve accessibility for farmers, the developed model seamlessly integrates with a mobile application, offering immediate results upon image upload or capture. In case of a detected disease, the application provides detailed information on the disease, its causes, and available treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
维奈克拉应助uncle采纳,获得10
2秒前
陈功人士完成签到,获得积分20
3秒前
踏实白柏完成签到 ,获得积分10
4秒前
慕念完成签到,获得积分10
5秒前
myy完成签到,获得积分10
5秒前
6秒前
6秒前
semon发布了新的文献求助30
6秒前
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
yznfly应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得50
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
7秒前
nyy完成签到,获得积分20
7秒前
buno应助科研通管家采纳,获得10
7秒前
珍珍发布了新的文献求助10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
buno应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
追尾的猫完成签到 ,获得积分10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI6应助晴天采纳,获得10
8秒前
花开不败发布了新的文献求助10
9秒前
灵梦柠檬酸完成签到,获得积分10
9秒前
万能图书馆应助美好斓采纳,获得50
9秒前
nyy发布了新的文献求助10
10秒前
10秒前
Bonny完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
LLL发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605