已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new machine learning model to predict the prognosis of cardiogenic brain infarction

计算机科学 心源性休克 心肌梗塞 脑梗塞 梗塞 人工智能 医学 内科学 心脏病学 机器学习 缺血
作者
Xuezhi Yang,Weiwei Quan,Jun-lei Zhou,Ou Zhang,Xiao‐Dong Wang,Chun‐Feng Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108600-108600 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108600
摘要

Cardiogenic cerebral infarction (CCI) is a disease in which the blood supply to the blood vessels in the brain is insufficient due to atherosclerosis or stenosis of the coronary arteries in the patient's heart, which leads to neurological deficits. To predict the pathogenic factors of cardiogenic cerebral infarction, this paper proposes a machine learning based analytical prediction model. 494 patients with CCI who were hospitalized for the first time were consecutively included in the study between January 2017 and December 2021, and followed up every three months for one year after hospital discharge. Clinical, laboratory and imaging data were collected, and predictors associated with relapse and death in CCI patients at six months and one year after discharge were analyzed using univariate and multivariate logistic regression methods, meanwhile established a new machine learning model based on the enhanced moth-flame optimization (FTSAMFO) and the fuzzy K-nearest neighbor (FKNN), called BITSAMFO-FKNN, which is practiced on the dataset related to patients with CCI. It is based on the improved moth-flame optimization (FTSAMFO) and the fuzzy K-nearest neighbor (FKNN). Specifically, this paper proposes the spatial transformation strategy to increase the development capability of moth-flame optimization (MFO) and combines it with the tree seed algorithm (TSA) to increase the search capability of MFO. In the benchmark function experiments FTSAMFO beat 5 classical algorithms and 5 recent variants. In the feature selection experiment, ten times ten-fold cross-validation trials showed that the BITSAMFO-FKNN model proved actual medical importance and efficacy, with an accuracy value of 96.61%, sensitivity value of 0.8947, MCC value of 0.9231, and F-Measure of 0.9444. The results of the trial showed that hemorrhagic conversion and lower LVDD/LVSD were independent risk factors for recurrence and death in patients with CCI. The established BITSAMFO-FKNN method is helpful for CCI prognosis and deserves further clinical validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助cherish采纳,获得10
2秒前
周周发布了新的文献求助50
4秒前
4秒前
yzm完成签到,获得积分10
5秒前
5秒前
何睦完成签到,获得积分10
6秒前
852应助言言采纳,获得10
6秒前
隐形曼青应助cheng采纳,获得50
7秒前
LL完成签到,获得积分10
7秒前
科研通AI6应助dubobo采纳,获得10
8秒前
8秒前
long发布了新的文献求助10
8秒前
9秒前
孙孙发布了新的文献求助10
9秒前
9秒前
Grace发布了新的文献求助10
10秒前
英姑应助long采纳,获得10
12秒前
hannah发布了新的文献求助10
13秒前
sky发布了新的文献求助10
14秒前
慕青应助WZ采纳,获得10
15秒前
科研通AI5应助陶醉的羞花采纳,获得10
16秒前
小燕子发布了新的文献求助10
16秒前
18秒前
鱼羊明完成签到 ,获得积分10
19秒前
DONG发布了新的文献求助10
20秒前
远山发布了新的文献求助10
21秒前
23秒前
27秒前
美满一寡发布了新的文献求助10
27秒前
Orange应助科研通管家采纳,获得30
28秒前
汉堡包应助科研通管家采纳,获得10
29秒前
每天自然醒完成签到,获得积分10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
yydragen应助科研通管家采纳,获得50
29秒前
29秒前
Jasper应助科研通管家采纳,获得30
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
Howard完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4374769
求助须知:如何正确求助?哪些是违规求助? 3871252
关于积分的说明 12066363
捐赠科研通 3514035
什么是DOI,文献DOI怎么找? 1928388
邀请新用户注册赠送积分活动 970089
科研通“疑难数据库(出版商)”最低求助积分说明 868836