Efficient multi-scale object detection model with space-to-depth convolution and BiFPN combined with FasterNet: a high-performance model for precise steel surface defect detection

人工智能 卷积(计算机科学) 计算机视觉 计算机科学 目标检测 比例(比率) 曲面(拓扑) 图像处理 缩放空间 模式识别(心理学) 图像(数学) 数学 几何学 物理 人工神经网络 量子力学
作者
Jun Su,Heping Zhang,Кrzysztof Przystupa,Орест Кочан
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (03)
标识
DOI:10.1117/1.jei.33.3.033019
摘要

This work proposes efficient multi-scale object detection model with space-to-depth convolution and BiFPN combined with FasterNet (ES-BiCF-YOLOv8), a deep learning method, to address the problems associated with detecting steel surface defects in contemporary industrial production. The method makes innovative improvements based on the YOLOv8 algorithm and enhances the performance of the novel model mainly through the following aspects. First, the space-to-depth layer followed by a non-strided convolution layer (SPD-Conv) and the efficient multi-scale attention mechanism is introduced into the feature extraction network to enhance the model's ability to capture fine-grained information and the fusion of multi-scale features. Second, the feature fusion network is optimized by utilizing a weighted bi-directional feature pyramid network and a lightweight network, FasterNet, to improve computational efficiency. Finally, it is shown that ES-BiCF-YOLOv8 reduces the complexity and computational requirements of the model while increasing the detection accuracy utilizing the NEU-DET dataset and deepPCB dataset with substantial experimental validation. The ES-BiCF-YOLOv8 model achieves a 5% improvement of the mean average precision value on the NEU-DET dataset, with the number of parameters and the computational amount only being the baseline 89% and 27%, and also demonstrates good generalization performance on the deepPCB dataset. Furthermore, the experiments demonstrate that ES-BiCF-YOLOv8 can be used for steel surface defect detection in industrial production because it uses less computational resources and can detect in real-time while maintaining high accuracy, in comparison to other popular object detection algorithms. The results of this work not only improve the efficiency and accuracy of steel surface defect detection but also provide ideas for the application of deep learning in the field of industrial detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助10
刚刚
DreamMaker完成签到 ,获得积分10
刚刚
3秒前
岑晓冰完成签到 ,获得积分10
5秒前
5秒前
搜集达人应助哈哈哈采纳,获得10
6秒前
无情听南完成签到,获得积分10
7秒前
我爱螺蛳粉完成签到 ,获得积分10
8秒前
fafa发布了新的文献求助10
10秒前
lin完成签到 ,获得积分10
12秒前
13秒前
CipherSage应助栀璃鸳挽采纳,获得10
15秒前
deswin完成签到 ,获得积分10
17秒前
CipherSage应助Sephirex采纳,获得30
18秒前
哈哈哈发布了新的文献求助10
19秒前
明理的天抒完成签到 ,获得积分10
21秒前
25秒前
27秒前
哈哈哈完成签到,获得积分10
27秒前
勤奋完成签到,获得积分0
28秒前
maodianandme发布了新的文献求助10
32秒前
紫瓜完成签到,获得积分10
32秒前
科研通AI5应助玄轩采纳,获得10
32秒前
orixero应助帅气的猫采纳,获得10
34秒前
36秒前
36秒前
SciGPT应助HS采纳,获得10
37秒前
于清绝完成签到 ,获得积分10
38秒前
杨佳晨发布了新的文献求助10
39秒前
科目三应助科研通管家采纳,获得30
41秒前
赘婿应助科研通管家采纳,获得10
41秒前
搜集达人应助科研通管家采纳,获得10
41秒前
小马甲应助科研通管家采纳,获得10
41秒前
Azhou应助科研通管家采纳,获得10
41秒前
乐乐应助科研通管家采纳,获得20
41秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
打打应助科研通管家采纳,获得10
42秒前
贰鸟应助科研通管家采纳,获得20
42秒前
SciGPT应助科研通管家采纳,获得10
42秒前
斯文败类应助关天木采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133