Depth extraction of 3D defects on curved surfaces with multi-line lasers

激光器 直线(几何图形) 萃取(化学) 光学 材料科学 地质学 几何学 物理 数学 化学 色谱法
作者
Lei Jin,Siyuan Li,Ke Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105201-105201 被引量:2
标识
DOI:10.1088/1361-6501/ad5b7e
摘要

Abstract The adoption of computer vision technology has significantly impacted surface defect inspection by providing a non-contact, cost-effective solution that has been widely accepted. Among the various techniques available, three-dimensional (3D) defect inspection using multi-line lasers is notable for its simplicity, high detection speed, and extensive coverage. The accuracy of this method is significantly constrained by the precision of laser stripe extraction. In industrial environments, achieving accurate extraction is hindered by the intricate surface geometries of objects and the challenge of maintaining uniform brightness in multi-line laser stripes. To address these challenges, we propose a novel approach to extract the depth of 3D defects on surfaces using multi-line lasers. Our method combines guided filtering and the Frankle-McCann Retinex algorithms to improve the quality of captured images. We have refined the laser stripe extraction process and proposed an advanced adaptive threshold segmentation technique that utilizes the OTSU method to determine threshold coefficients, followed by secondary segmentation based on a neighborhood search. The extracted laser strips are then processed using the quadratic weighted gray gravity method. Additionally, we proposed an innovative region-growth segmentation method based on neighborhood search that effectively segments individual laser strips. We also design a strategy for determining 3D defect depths in situations where precise camera calibration is challenging. The efficacy of our proposed method was rigorously tested on a hot-rolled seamless steel tube with a diameter of 145 mm. The resulting 3D defect depth exhibited an error of less than 0.5 mm, meeting the stringent standards required for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向北完成签到,获得积分10
刚刚
王陈龙完成签到,获得积分10
1秒前
朴实以松完成签到,获得积分10
2秒前
燕祁完成签到,获得积分10
2秒前
嘿嘿嘿完成签到,获得积分10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
6秒前
song发布了新的文献求助10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
阿kkk应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
小白的小弟完成签到,获得积分10
6秒前
mzhnx应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得30
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
冰魂应助yuanqi采纳,获得20
9秒前
白露完成签到 ,获得积分10
10秒前
11秒前
共享精神应助qf123456采纳,获得10
11秒前
12秒前
12秒前
my驳回了Lucas应助
13秒前
爆米花应助ccc采纳,获得10
13秒前
燕祁发布了新的文献求助10
14秒前
天天快乐应助song采纳,获得10
15秒前
扶余山本发布了新的文献求助10
15秒前
bodhi发布了新的文献求助30
15秒前
15098762335发布了新的文献求助10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841993
求助须知:如何正确求助?哪些是违规求助? 3384034
关于积分的说明 10532408
捐赠科研通 3104394
什么是DOI,文献DOI怎么找? 1709626
邀请新用户注册赠送积分活动 823315
科研通“疑难数据库(出版商)”最低求助积分说明 773890