Three-Dimensional (3D) deep learning model complements existing models for preoperative disease-free survival prediction (DFS) in localized clear cell renal cell carcinoma (ccRCC): A multicenter retrospective cohort study

医学 肾透明细胞癌 分布式文件系统 内科学 队列 危险分层 肾细胞癌 回顾性队列研究 肿瘤科 弗雷明翰风险评分 病态的 疾病 计算机安全 计算机科学
作者
Yingjie Xv,Zongjie Wei,Qingwu Jiang,Xuan Zhang,Yong Chen,Bangxin Xiao,Siwen Yin,Zongyu Xia,Ming Qiu,Yang Li,Hao Tan,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000001808
摘要

Background: Current prognostic models have limited predictive abilities for the growing number of localized (stage I-III) ccRCCs. It is therefore crucial to explore novel preoperative recurrence prediction models to accurately stratify patients and optimize clinical decisions. This purpose of this study was to develop and externally validate a CT-based deep learning (DL) model for pre-surgical disease-free survival (DFS) prediction. Methods: Patients with localized ccRCC were retrospectively enrolled from six independent medical centers. Three-dimensional (3D) tumor regions from CT images were utilized as input to architect a ResNet 50 model, which outputted DL computed risk score (DLCR) of each patient for DFS prediction later. The predictive performance of DLCR was assessed and compared to the radiomics model (Rad-Score), clinical model we built and two existing prognostic models (UISS and Leibovich). The complementary value of DLCR to the UISS, Leibovich, as well as Rad-Score were evaluated by stratified analysis. Results: 707 patients with localized ccRCC were finally enrolled for models’ training and validating. The DLCR we established can perfectly stratify patients into low-, intermediate- and high-risks, and outperformed the Rad-Score, clinical model, UISS and Leibovich score in DFS prediction, with a C-index of 0.754 (0.689-0.821) in the external testing set. Furthermore, the DLCR presented excellent risk stratification capacity in subgroups defined by almost all clinic-pathological features. Moreover, patients in the UISS/Leibovich score/Rad-Score stratified low-risk but DLCR-defined intermediate- and high-risk groups were significantly more likely to experience ccRCC recurrences than those of intermediate- and high-risk in DLCR determined low-risk (all Log-rank P values<0.05). Conclusions: Our deep learning model, derived from preoperative CT, is superior to radiomics and current models in precisely DFS predicting of localized ccRCC, and can provide complementary values to them, which may assist more informed clinical decisions and adjuvant therapies adoptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Unicorn发布了新的文献求助20
1秒前
dongdadada完成签到,获得积分10
1秒前
向亦寒发布了新的文献求助30
2秒前
啦啦啦完成签到,获得积分10
2秒前
拼搏的康乃馨完成签到,获得积分10
3秒前
3秒前
eva完成签到,获得积分20
3秒前
HJJHJH发布了新的文献求助10
3秒前
3秒前
Akim应助美好斓采纳,获得10
4秒前
饱满的心情完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
深情安青应助MORNING采纳,获得10
6秒前
高贵的老太完成签到,获得积分10
6秒前
star应助HJJHJH采纳,获得10
7秒前
星辰大海应助HJJHJH采纳,获得50
7秒前
7秒前
wxy发布了新的文献求助10
8秒前
8秒前
英姑应助结实的凉面采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
朱柯虹发布了新的文献求助10
9秒前
英俊的铭应助风语村采纳,获得50
9秒前
王亚宁发布了新的文献求助10
9秒前
北侨发布了新的文献求助10
9秒前
cqh发布了新的文献求助10
10秒前
11秒前
11秒前
物外发布了新的文献求助10
11秒前
小蘑菇应助和谐面包采纳,获得10
13秒前
上官若男应助明理可仁采纳,获得10
13秒前
听话的盼秋完成签到,获得积分10
13秒前
无花果应助kai采纳,获得10
13秒前
Tec7发布了新的文献求助10
14秒前
罗浩阳完成签到,获得积分10
15秒前
Wiz111完成签到,获得积分20
15秒前
211JZH发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087863
求助须知:如何正确求助?哪些是违规求助? 4303011
关于积分的说明 13409850
捐赠科研通 4128496
什么是DOI,文献DOI怎么找? 2260962
邀请新用户注册赠送积分活动 1265082
关于科研通互助平台的介绍 1199433