Unpaired Deblurring via Decoupled Diffusion Model

去模糊 图像(数学) 生成模型 生成语法 人工智能 扩散 计算机视觉 计算机科学 图像复原 物理 图像处理 热力学
作者
Junhao Cheng,Wei‐Ting Chen,Xi Lu,Ming–Hsuan Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.01522
摘要

Generative diffusion models trained on large-scale datasets have achieved remarkable progress in image synthesis. In favor of their ability to supplement missing details and generate aesthetically pleasing contents, recent works have applied them to image deblurring via training an adapter on blurry-sharp image pairs to provide structural conditions for restoration. However, acquiring substantial amounts of realistic paired data is challenging and costly in real-world scenarios. On the other hand, relying solely on synthetic data often results in overfitting, leading to unsatisfactory performance when confronted with unseen blur patterns. To tackle this issue, we propose UID-Diff, a generative-diffusion-based model designed to enhance deblurring performance on unknown domains by decoupling structural features and blur patterns through joint training on three specially designed tasks. We employ two Q-Formers as structural features and blur patterns extractors separately. The features extracted by them will be used for the supervised deblurring task on synthetic data and the unsupervised blur-transfer task by leveraging unpaired blurred images from the target domain simultaneously. We further introduce a reconstruction task to make the structural features and blur patterns complementary. This blur-decoupled learning process enhances the generalization capabilities of UID-Diff when encountering unknown blur patterns. Experiments on real-world datasets demonstrate that UID-Diff outperforms existing state-of-the-art methods in blur removal and structural preservation in various challenging scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sherry发布了新的文献求助10
1秒前
1秒前
HITvagary完成签到,获得积分10
1秒前
小幸丶发布了新的文献求助10
2秒前
阳光宝贝完成签到,获得积分10
3秒前
耍酷的怀莲完成签到,获得积分10
4秒前
4秒前
SciGPT应助阳光宝贝采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
大大怪完成签到 ,获得积分10
7秒前
9秒前
9秒前
11秒前
顺利的愫发布了新的文献求助10
12秒前
15秒前
18秒前
18秒前
稳重白猫发布了新的文献求助10
19秒前
bkagyin应助RL采纳,获得10
20秒前
靛蓝喹啉完成签到 ,获得积分10
20秒前
20秒前
20秒前
21秒前
小纪发布了新的文献求助10
23秒前
冰河完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
27秒前
march发布了新的文献求助10
30秒前
yml发布了新的文献求助10
30秒前
aaaaa完成签到 ,获得积分10
30秒前
30秒前
31秒前
科研通AI6应助无奈的萝采纳,获得10
32秒前
aaaaa关注了科研通微信公众号
33秒前
33秒前
盼夏发布了新的文献求助10
34秒前
修越完成签到 ,获得积分10
34秒前
NexusExplorer应助Zyk采纳,获得10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416958
求助须知:如何正确求助?哪些是违规求助? 4533026
关于积分的说明 14137984
捐赠科研通 4449106
什么是DOI,文献DOI怎么找? 2440575
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858