Machine learning-based infection diagnostic and prognostic models in post-acute care settings: a systematic review

奇纳 数据提取 计算机科学 杠杆(统计) 机器学习 检查表 梅德林 模式 人工智能 医学 心理学 心理干预 护理部 社会科学 社会学 政治学 法学 认知心理学
作者
Zidu Xu,Danielle Scharp,Mollie Hobensack,Jiancheng Ye,Jungang Zou,Sirui Ding,Jingjing Shang,Maxim Topaz
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:32 (1): 241-252
标识
DOI:10.1093/jamia/ocae278
摘要

Abstract Objectives This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models. Materials and Methods PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework. Results Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity. Discussion and Conclusion Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的翅膀完成签到,获得积分10
1秒前
窝的小卷毛完成签到,获得积分10
1秒前
你终硕发布了新的文献求助10
1秒前
2秒前
结实星星应助勤恳的宛菡采纳,获得10
2秒前
asymmetric糖发布了新的文献求助10
2秒前
yanjun_j完成签到,获得积分10
2秒前
3秒前
树懒完成签到,获得积分10
4秒前
独特涫完成签到,获得积分10
4秒前
5秒前
fuqiangaaa1完成签到,获得积分10
5秒前
星河梦枕完成签到,获得积分10
5秒前
kannakaco完成签到,获得积分10
5秒前
202412951124发布了新的文献求助10
6秒前
小小完成签到,获得积分10
6秒前
6秒前
6秒前
竹筏过海应助疯狂的翅膀采纳,获得30
6秒前
lisa完成签到,获得积分10
6秒前
脑洞疼应助BaiX采纳,获得10
7秒前
7秒前
pharmstudent完成签到,获得积分10
7秒前
852应助tangyuan采纳,获得10
7秒前
鱼雷完成签到 ,获得积分10
8秒前
leeee完成签到,获得积分10
8秒前
9秒前
科研通AI5应助asymmetric糖采纳,获得10
9秒前
9秒前
芸沐发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
斯文芷荷发布了新的文献求助10
11秒前
小值钱完成签到,获得积分10
11秒前
刘能完成签到,获得积分10
11秒前
科研通AI5应助大气萤采纳,获得10
12秒前
12秒前
kylin完成签到 ,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747