Unraveling the physiochemical characteristics and molecular insights of Zein protein through structural modeling and conformational dynamics: a synergistic approach between machine learning and molecular dynamics simulations

分子动力学 动力学(音乐) 化学 化学物理 生物物理学 生物系统 计算化学 物理 生物 声学
作者
Amit Kumar Srivastav,Jyoti Jaiswal,Umesh Kumar
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-20 被引量:5
标识
DOI:10.1080/07391102.2024.2428825
摘要

This research article presents a comprehensive investigation into the three-dimensional structure, physicochemical characteristics and conformational stability of the Zein protein. Machine learning (ML) based homology modeling approach, was employed to predict the 3D structure of Zein protein. Convolutional neural networks (CNNs) were utilized for refining the model, capturing complex spatial features and improving decoy refinement. The predicted 3D structure of Zein protein showed a high-confidence score, i.e. C-score of 0.96. Physiochemical characteristic was also analyzed to investigate its protonation and deprotonation behavior across a range of pH values. A comprehensive analysis of the titration curve and electrostatic charges was performed to uncover valuable molecular insights into the zein protein's charge distribution, electrostatic interactions and potential conformational changes. Molecular dynamics (MD) simulations were performed to analyze the zein structural behavior under different pH values (2.0, 4.5, 6.8, 10.0 and 12.5), ionic strengths (0 mM, 25 mM, 50 mM, 75 mM, 100 mM) and temperatures (300K, 350K, 375K). Our results demonstrated the influence of these factors on zein protein's stability and conformational dynamics. At extreme pH values of 2.0 and 12.5, the Zein protein exhibited increased structural deviations and potential unfolding, while intermediate pH values closer to the protein's isoelectric point (pI) demonstrated more compact and stable conformations. Analysis of root mean square deviation, radius of gyration, solvent accessible surface area and Ramachandran plot provided clear understandings of the protein's compactness and surface exposure, confirming the impact of pH, ionic strength and temperature on the protein's conformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀曼彤完成签到,获得积分20
刚刚
SY完成签到 ,获得积分10
刚刚
1秒前
1秒前
脑洞疼应助彩色的续采纳,获得10
2秒前
皮肤科王东明完成签到,获得积分10
3秒前
3秒前
清秀的小刺猬应助末末采纳,获得70
3秒前
rose关注了科研通微信公众号
3秒前
3秒前
呆萌的菠萝应助山茶花采纳,获得10
3秒前
寒霜扬名完成签到 ,获得积分10
3秒前
4秒前
4秒前
Simonn29完成签到,获得积分10
5秒前
NexusExplorer应助hbzjt2012采纳,获得30
5秒前
5秒前
麻瓜不是瓜完成签到 ,获得积分20
5秒前
6秒前
7秒前
7秒前
7秒前
fufu完成签到,获得积分10
7秒前
8秒前
六六哈发布了新的文献求助10
8秒前
CodeCraft应助可燃冰采纳,获得10
8秒前
Wenjie发布了新的文献求助10
8秒前
xue发布了新的文献求助10
8秒前
wanci应助JHM采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
稚生w发布了新的文献求助10
9秒前
Baneyhua发布了新的文献求助10
10秒前
朴实水壶发布了新的文献求助10
10秒前
CodeCraft应助闪闪的熠彤采纳,获得10
10秒前
bkagyin应助哈哈哈哈哈哈采纳,获得10
10秒前
10秒前
赵兴宇发布了新的文献求助10
12秒前
樱悼柳雪发布了新的文献求助10
12秒前
13秒前
tejing1158发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662339
求助须知:如何正确求助?哪些是违规求助? 4841915
关于积分的说明 15099227
捐赠科研通 4820774
什么是DOI,文献DOI怎么找? 2580225
邀请新用户注册赠送积分活动 1534281
关于科研通互助平台的介绍 1492959