DO-GMA: An End-to-End Drug–Target Interaction Identification Framework with a Depthwise Overparameterized Convolutional Network and the Gated Multihead Attention Mechanism

端到端原则 计算机科学 机制(生物学) 鉴定(生物学) 人工智能 物理 生物 植物 量子力学
作者
Lihong Peng,Jiale Mao,Guohua Huang,Guo-Sheng Han,Xin Liu,Wen Liao,Geng Tian,Jialiang Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (3): 1318-1337 被引量:13
标识
DOI:10.1021/acs.jcim.4c02088
摘要

Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement. To address the above two problems, in this study, we develop a novel end-to-end framework named DO-GMA for potential DTI identification by incorporating Depthwise Overparameterized convolutional neural network and the Gated Multihead Attention mechanism with shared-learned queries and bilinear model concatenation. DO-GMA first designs a depthwise overparameterized convolutional neural network to learn drug representations from their SMILES strings and protein representations from their amino acid sequences. Next, it extracts drug representations from their 2D molecular graphs through a graph convolutional network. Subsequently, it fuses drug and protein features by combining the gated attention mechanism and the multihead attention mechanism with shared-learned queries and bilinear model concatenation. Finally, it takes the fused drug-target features as inputs and builds a multilayer perceptron to classify unlabeled drug-target pairs (DTPs). DO-GMA was benchmarked against six newest DTI prediction methods (CPI-GNN, BACPI, CPGL, DrugBAN, BINDTI, and FOTF-CPI) under four different experimental settings on four DTI data sets (i.e., DrugBank, BioSNAP, C.elegans, and BindingDB). The results show that DO-GMA significantly outperformed the above six methods based on AUC, AUPR, accuracy, F1-score, and MCC. An ablation study, robust statistical analysis, sensitivity analysis of parameters, visualization of the fused features, computational cost analysis, and case analysis further validated the powerful DTI identification performance of DO-GMA. In addition, DO-GMA predicted that two drug-protein pairs (i.e., DB00568 and P06276, and DB09118 and Q9UQD0) could be interacting. DO-GMA is freely available at https://github.com/plhhnu/DO-GMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坐亭下发布了新的文献求助10
刚刚
kirto发布了新的文献求助10
1秒前
斯文败类应助gustavo采纳,获得10
3秒前
Torrance完成签到,获得积分10
3秒前
施宇宙完成签到,获得积分10
5秒前
顾矜应助114514采纳,获得10
5秒前
阳光的以莲完成签到,获得积分10
5秒前
bkagyin应助watermelon采纳,获得10
6秒前
mixiaofo完成签到,获得积分20
6秒前
6秒前
7秒前
ding应助汉堡采纳,获得10
7秒前
wanci应助happy采纳,获得10
7秒前
7秒前
FashionBoy应助dsfsdf采纳,获得10
8秒前
搬砖人完成签到,获得积分10
8秒前
9秒前
程程完成签到 ,获得积分10
9秒前
斩荆披棘发布了新的文献求助10
9秒前
BowieHuang应助waa采纳,获得10
11秒前
11秒前
11秒前
肉桂卷发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
华仔应助火星上的听云采纳,获得10
12秒前
12秒前
12秒前
13秒前
hjz发布了新的文献求助10
13秒前
13秒前
找文献呢发布了新的文献求助10
14秒前
上官若男应助zz采纳,获得30
14秒前
Lucas应助11采纳,获得10
15秒前
16秒前
kirto完成签到,获得积分10
16秒前
gustavo发布了新的文献求助10
17秒前
114514发布了新的文献求助10
17秒前
18秒前
迟迟发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624