DO-GMA: An End-to-End Drug–Target Interaction Identification Framework with a Depthwise Overparameterized Convolutional Network and the Gated Multihead Attention Mechanism

端到端原则 计算机科学 机制(生物学) 鉴定(生物学) 人工智能 物理 生物 植物 量子力学
作者
Lihong Peng,Jiale Mao,Guohua Huang,Guo-Sheng Han,Xin Liu,Wen Liao,Geng Tian,Jialiang Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (3): 1318-1337 被引量:9
标识
DOI:10.1021/acs.jcim.4c02088
摘要

Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement. To address the above two problems, in this study, we develop a novel end-to-end framework named DO-GMA for potential DTI identification by incorporating Depthwise Overparameterized convolutional neural network and the Gated Multihead Attention mechanism with shared-learned queries and bilinear model concatenation. DO-GMA first designs a depthwise overparameterized convolutional neural network to learn drug representations from their SMILES strings and protein representations from their amino acid sequences. Next, it extracts drug representations from their 2D molecular graphs through a graph convolutional network. Subsequently, it fuses drug and protein features by combining the gated attention mechanism and the multihead attention mechanism with shared-learned queries and bilinear model concatenation. Finally, it takes the fused drug-target features as inputs and builds a multilayer perceptron to classify unlabeled drug-target pairs (DTPs). DO-GMA was benchmarked against six newest DTI prediction methods (CPI-GNN, BACPI, CPGL, DrugBAN, BINDTI, and FOTF-CPI) under four different experimental settings on four DTI data sets (i.e., DrugBank, BioSNAP, C.elegans, and BindingDB). The results show that DO-GMA significantly outperformed the above six methods based on AUC, AUPR, accuracy, F1-score, and MCC. An ablation study, robust statistical analysis, sensitivity analysis of parameters, visualization of the fused features, computational cost analysis, and case analysis further validated the powerful DTI identification performance of DO-GMA. In addition, DO-GMA predicted that two drug-protein pairs (i.e., DB00568 and P06276, and DB09118 and Q9UQD0) could be interacting. DO-GMA is freely available at https://github.com/plhhnu/DO-GMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bioli应助甜北枳采纳,获得10
刚刚
1秒前
1秒前
2秒前
浮游应助ty采纳,获得10
2秒前
沐籽关注了科研通微信公众号
4秒前
明理书萱发布了新的文献求助10
4秒前
4秒前
freezing完成签到,获得积分20
4秒前
浮生梦应助兵哥采纳,获得10
5秒前
5秒前
chris发布了新的文献求助10
5秒前
fxx完成签到,获得积分10
6秒前
6秒前
7秒前
YY发布了新的文献求助10
7秒前
科研通AI5应助赶路人采纳,获得30
7秒前
枯叶蝶发布了新的文献求助10
8秒前
科研通AI2S应助失眠的契采纳,获得10
8秒前
山山而川发布了新的文献求助10
9秒前
普通用户30号完成签到 ,获得积分10
9秒前
szw发布了新的文献求助10
9秒前
楚明允完成签到 ,获得积分10
10秒前
所所应助执着的采枫采纳,获得10
10秒前
11秒前
负责流口水完成签到,获得积分10
11秒前
12秒前
12秒前
chris完成签到,获得积分20
13秒前
英姑应助阔达书雪采纳,获得10
13秒前
zzj1904完成签到 ,获得积分20
13秒前
yrghitiam完成签到,获得积分10
14秒前
haita完成签到,获得积分10
14秒前
14秒前
adi完成签到,获得积分10
14秒前
诚心的海白完成签到 ,获得积分10
15秒前
15秒前
zhj完成签到 ,获得积分10
15秒前
15秒前
立青完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145899
求助须知:如何正确求助?哪些是违规求助? 4343023
关于积分的说明 13525255
捐赠科研通 4184036
什么是DOI,文献DOI怎么找? 2294433
邀请新用户注册赠送积分活动 1294820
关于科研通互助平台的介绍 1237937