Unlocking the Nitrogen Reduction Electrocatalyst with a Dual-Metal–Boron System: From High-Throughput Screening to Machine Learning

材料科学 催化作用 电催化剂 石墨烯 氧化还原 过渡金属 金属 化学工程 电化学 无机化学 纳米技术 物理化学 电极 化学 有机化学 工程类 冶金
作者
Chen Chen,Yi Liu,Xue-fang Yu,Zhongwei Li,Wenzuo Li,Qingzhong Li,Xiaolong Zhang,Bo Xiao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.4c15263
摘要

Recently, dual-metal catalysts have attracted much attention due to their abundant active sites and tunable chemical properties. On the other hand, metal borides have been widely applied in splitting the inert chemical bonds in small molecules (such as N2) because of their excellent catalytic performances. As a combination of the above two systems, in this work, 11 kinds of transition metal atoms (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and W) were selected to embed in boron-doped graphene (BG) to construct 66 dual-metal–boron systems, and their performances toward the N2 reduction reaction (NRR) were examined using first-principles simulations. Our results revealed that such a dual-TM@BG system exhibits excellent thermodynamic and electrochemical stabilities, which facilitate the experimental synthesis. In particular, Fe–Fe- and Fe–Co-doped BG exhibit excellent performance for NRR, with the limiting potentials of −0.29 and −0.32 V, respectively, and both of them exhibit inhibitory effects on the H2 evolution reaction. Remarkably, the microkinetic modeling analysis revealed that the turnover frequency for the NH3 production on FeFe@BG reaches up to 7.27 × 108 s–1 site–1 at 700 K and 100 bar, which further confirms its ultrafast reaction rate. In addition, the machine learning method was employed to further understand the catalytic mechanism, and it is found that the NRR performances of dual-TM@BG catalysts are closely related to the sum of radii of two TM atoms. Therefore, our work not only proposed two promising electrocatalysts for NRR but also verified the feasibility for the application of a dual-metal–boron system in NRR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
6秒前
李健的小迷弟应助dennisysz采纳,获得10
6秒前
Hello应助玖月采纳,获得10
8秒前
10秒前
jin发布了新的文献求助10
11秒前
负责的寒梅完成签到 ,获得积分10
13秒前
房产中介发布了新的文献求助10
14秒前
15秒前
王英霖完成签到 ,获得积分10
15秒前
Percy完成签到 ,获得积分10
15秒前
666完成签到,获得积分10
16秒前
科研通AI5应助jasonwee采纳,获得10
17秒前
努力搞科研完成签到,获得积分10
25秒前
小马甲应助joysa采纳,获得10
25秒前
jin完成签到,获得积分10
26秒前
zsg完成签到,获得积分10
26秒前
26秒前
十二发布了新的文献求助50
29秒前
30秒前
33秒前
冰海完成签到 ,获得积分10
34秒前
科研通AI5应助nenoaowu采纳,获得30
39秒前
玖月发布了新的文献求助10
40秒前
秋秋完成签到,获得积分10
42秒前
JamesPei应助熬夜猫采纳,获得10
43秒前
搜集达人应助夏沐采纳,获得10
45秒前
内向南风完成签到 ,获得积分10
46秒前
斯文败类应助听风飘逸采纳,获得10
47秒前
48秒前
科研通AI2S应助科研通管家采纳,获得30
49秒前
酷波er应助科研通管家采纳,获得10
49秒前
乐乐应助科研通管家采纳,获得10
49秒前
小蘑菇应助科研通管家采纳,获得10
49秒前
ding应助科研通管家采纳,获得10
49秒前
ding应助科研通管家采纳,获得10
49秒前
爆米花应助科研通管家采纳,获得10
49秒前
NexusExplorer应助科研通管家采纳,获得30
49秒前
49秒前
Akim应助秋秋采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777368
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211483
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667077
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758103