Growth and characterization of high-quality Zr doped AlN epilayers

兴奋剂 表征(材料科学) 材料科学 宽禁带半导体 光电子学 纳米技术
作者
Hala A. Alwan,Nazir Hossain,J. Li,J. Y. Lin,H. X. Jiang
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:126 (2)
标识
DOI:10.1063/5.0250015
摘要

AlN stands out for its remarkable figures of merit for electronic and photonic devices, attributed to its ultrawide bandgap of ∼6.1 eV and an exceptionally high critical field of ∼15 MV/cm. More recently, zirconium (Zr) doped AlN (AlN:Zr) has also been identified as a promising material platform for the exploration of solid-state qubits for quantum information and technology, high performance piezoelectric acoustic wave resonators, and optically triggered ultrafast power switching devices facilitated by optically activating Zr related impurities. Despite the significant potential, the ability for producing AlN:Zr epitaxial structures has yet to be established. In this study, we have achieved AlN:Zr epilayers with a high Zr doping level [NZr] of up to 1020 cm−3 using industrial standard metal-organic chemical vapor deposition growth technique. High crystalline quality of AlN:Zr was confirmed by x-ray diffraction, revealing a narrow full width at half maximum of the (002) rocking curve at 216 arcsec for 1.8 μm thick epilayers deposited on sapphire at [NZr]=1020 cm−3. Zr doping was observed to slightly increase the c-lattice constant to 4.992 Å for AlN:Zr (at [NZr]=1020 cm−3) compared to 4.980 Å for undoped AlN. X-ray photoelectron spectroscopy measurement results verified the substitution of Zr at the Al site (ZrAl). The formation of (ZrAl–VN) complexes, which are predicted to possess all the desired properties required by quantum qubits, was confirmed through optical absorption studies. The realization of high-quality AlN:Zr epilayers significantly broadens the scope of technologically significant device applications for AlN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Zoe采纳,获得10
1秒前
1秒前
huazhangchina发布了新的文献求助10
1秒前
狮子发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
晗晗关注了科研通微信公众号
6秒前
WY发布了新的文献求助10
7秒前
8秒前
穆一手完成签到 ,获得积分10
8秒前
zhjp发布了新的文献求助10
8秒前
无可匹敌的饭量给无可匹敌的饭量的求助进行了留言
10秒前
懒羊羊发布了新的文献求助10
11秒前
尘飞扬完成签到,获得积分10
12秒前
搜集达人应助小梧采纳,获得10
12秒前
科研通AI6应助马凤杰采纳,获得10
12秒前
追寻的月光完成签到,获得积分10
12秒前
cc发布了新的文献求助10
14秒前
哈哈完成签到,获得积分10
15秒前
15秒前
夏天发布了新的文献求助30
16秒前
16秒前
16秒前
WXT1111完成签到,获得积分10
17秒前
小蘑菇应助闪闪的乐蕊采纳,获得10
18秒前
深情安青应助闪闪的乐蕊采纳,获得10
18秒前
尘飞扬发布了新的文献求助30
19秒前
CipherSage应助熙梓日记采纳,获得10
19秒前
科目三应助user_huang采纳,获得10
20秒前
21秒前
大帅哥my完成签到,获得积分10
21秒前
21秒前
xwhhxxb发布了新的文献求助10
21秒前
22秒前
23秒前
小白不会下载完成签到 ,获得积分10
23秒前
奋斗蜗牛发布了新的文献求助10
23秒前
崔志海完成签到,获得积分10
24秒前
Owen应助cc采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4761142
求助须知:如何正确求助?哪些是违规求助? 4101509
关于积分的说明 12691240
捐赠科研通 3817259
什么是DOI,文献DOI怎么找? 2107125
邀请新用户注册赠送积分活动 1131772
关于科研通互助平台的介绍 1010672