Bioinspired Iron Porphyrin Covalent Organic Frameworks-Based Nanozymes Sensor Array: Machine Learning-Assisted Identification and Detection of Thiols

卟啉 材料科学 共价键 纳米技术 检出限 共价有机骨架 辣根过氧化物酶 组合化学 计算机科学 有机化学 色谱法 化学
作者
Cong Hu,Wenkun Xie,Jin Liu,Yajing Zhang,Ying Sun,Zongwei Cai,Zian Lin
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (51): 71048-71059 被引量:1
标识
DOI:10.1021/acsami.4c18284
摘要

Given the crucial role of thiols in maintaining normal physiological functions, it is essential to establish a high-throughput and sensitive analytical method to identify and quantify various thiols accurately. Inspired by the iron porphyrin active center of natural horseradish peroxidase (HRP), we designed and synthesized two iron porphyrin covalent organic frameworks (Fe-COF-H and Fe-COF-OH) with notable peroxidase-like (POD) activity, capable of catalyzing 3,3′,5,5′-tetramethylbenzidine (TMB) into oxidized TMB with three distinct absorption peaks. Based on these, a six-channel nanozyme colorimetric sensor array was constructed, which could map the specific fingerprints of various thiols. Subsequently, machine learning techniques, including supervised learning with linear discriminant analysis (LDA), decision trees (DT) and artificial neural networks (ANN), unsupervised learning with hierarchical cluster analysis (HCA), and ensemble learning with random forests (RF), were used for precise identification of thiols in complex systems, with a detection limit as low as 50 nM. Significantly, the sensor array demonstrated strong potential for practical applications, including analyzing homocysteine (Hcy) in human serum, mercaptoacetic acid (TGA) in depilatory creams, and glutathione (GSH) in cell lysates, thereby showing promise for use in disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Akim应助ruby采纳,获得10
3秒前
万能图书馆应助夏欣采纳,获得10
5秒前
666666666666666完成签到 ,获得积分10
5秒前
5秒前
imaginary应助LLSSLL采纳,获得10
5秒前
希尔发布了新的文献求助10
5秒前
LS发布了新的文献求助10
6秒前
羊羊完成签到,获得积分10
7秒前
7秒前
Ximena完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
蜉蝣发布了新的文献求助10
10秒前
Lucas应助Lucy1069089289采纳,获得10
11秒前
wanci应助阿乐采纳,获得10
12秒前
12秒前
青山完成签到,获得积分10
12秒前
Ximena发布了新的文献求助10
13秒前
AlexanderNEIL发布了新的文献求助10
13秒前
叶123完成签到,获得积分10
14秒前
15秒前
清脆的坤完成签到,获得积分10
16秒前
tsumugi发布了新的文献求助10
16秒前
xx完成签到,获得积分10
16秒前
科研通AI5应助fffan采纳,获得10
17秒前
CodeCraft应助中岛由贵的狗采纳,获得10
17秒前
wanci应助jinxiao采纳,获得10
17秒前
17秒前
18秒前
xx发布了新的文献求助10
19秒前
FashionBoy应助Garfield采纳,获得10
19秒前
19秒前
20秒前
大模型应助cdcd采纳,获得10
21秒前
yukie发布了新的文献求助10
21秒前
21秒前
上官若男应助Qun采纳,获得10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786018
求助须知:如何正确求助?哪些是违规求助? 3331550
关于积分的说明 10251498
捐赠科研通 3046914
什么是DOI,文献DOI怎么找? 1672269
邀请新用户注册赠送积分活动 801207
科研通“疑难数据库(出版商)”最低求助积分说明 760020