Formation and propagation of cracks in RRP Nb3Sn wires studied by deep learning applied to x-ray tomography

材料科学 复合材料 抗压强度 同步辐射 磁铁 脆性 同步加速器 光学 机械工程 物理 工程类
作者
Tommaso Bagni,Diego Mauro,Marta Majkut,Alexander Rack,Carmine Senatore
出处
期刊:Superconductor Science and Technology [IOP Publishing]
卷期号:35 (10): 104003-104003 被引量:9
标识
DOI:10.1088/1361-6668/ac86ac
摘要

Abstract This paper reports a novel non-destructive and non-invasive method to investigate crack formation and propagation in high-performance Nb 3 Sn wires by combining x-ray tomography and deep learning networks. The next generation of high field magnet applications relies on the development of new Nb 3 Sn wires capable to withstand the large stresses generated by Lorentz forces during magnets operation. These stresses can cause a permanent reduction of the transport properties generated by residual deformation of the Nb 3 Sn crystal lattice as well as the formation of cracks in the brittle Nb 3 Sn filaments. Studies for the development of the high luminosity LHC (HL-LHC) upgrade showed that nominal transverse compressive stresses above 150 MPa may be sufficient to generate cracks in the wires. In the case of fusion magnets, wires experience periodic bending due to the electro-magnetic cycles of the reactor which over time may induce wire deformation and filament cracks. Therefore, it has become essential to develop a quantitative method for the characterization of crack formation and propagation under compressive loads. The x-ray tomographic data of a series of restacked-rod-process (RRP) Nb 3 Sn wires was acquired at the micro-tomography beamline ID19 of the European Synchrotron Radiation Facility (ESRF), after intentionally inducing a broad spectrum of cracks in the Nb 3 Sn sub-elements. The samples were submitted to transvers compressive stresses, with and without epoxy impregnation, at different pressures, up to 238 MPa. The resulting tomographic images were analysed by means of deep learning semantic segmentation networks, using U-net, a convolutional neural network (CNN), to identify and segment cracks inside the wires. The trained CNN was able to analyse large volumes of tomographic data, thus enabling a systematic approach for investigating the mechanical damages in Nb 3 Sn wires. We will show the complete three-dimensional reconstruction of various cracks and discuss their impact on the electro-mechanical performance of the analysed wires.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助karina采纳,获得10
3秒前
薛佳佳完成签到 ,获得积分10
4秒前
开元完成签到,获得积分10
5秒前
上帝粒子应助萝卜不困采纳,获得10
5秒前
酱婶发布了新的文献求助10
6秒前
BowieHuang应助yyanxuemin919采纳,获得10
7秒前
顺顺尼完成签到,获得积分10
9秒前
管夜白完成签到,获得积分10
9秒前
隐形的非笑完成签到 ,获得积分10
10秒前
13秒前
风趣缘分发布了新的文献求助10
13秒前
讨厌的十九岁完成签到,获得积分10
13秒前
聪明蛋子完成签到 ,获得积分10
13秒前
jsxok完成签到,获得积分20
14秒前
烟花应助蟹煲皇在学秘方采纳,获得10
14秒前
15秒前
16秒前
jsxok发布了新的文献求助10
18秒前
炸茄盒的老头完成签到,获得积分10
19秒前
我必中发布了新的文献求助10
20秒前
派大赐发布了新的文献求助10
22秒前
22秒前
23秒前
冒如怿发布了新的文献求助10
23秒前
JJ完成签到,获得积分10
23秒前
24秒前
26秒前
草东树完成签到,获得积分10
26秒前
度ewf发布了新的文献求助10
27秒前
chen发布了新的文献求助10
28秒前
28秒前
28秒前
30秒前
31秒前
Lucas应助无趣采纳,获得30
32秒前
dd发布了新的文献求助10
33秒前
allenice完成签到,获得积分0
33秒前
35秒前
eeee关注了科研通微信公众号
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563569
求助须知:如何正确求助?哪些是违规求助? 4648446
关于积分的说明 14684930
捐赠科研通 4590411
什么是DOI,文献DOI怎么找? 2518501
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432