Recent Advance of Machine Learning in Selecting New Materials

化学
作者
Xingyi Qi,Yaofeng Hu,Ruoyu Wang,Yaqing Yang,Yufei Zhao
出处
期刊:Acta Chimica Sinica [Science Press]
卷期号:81 (2): 158-158 被引量:6
标识
DOI:10.6023/a22110446
摘要

The new material industry is the foundation of technological change in many related fields, and also the forerunner of the development of new energy, aerospace, electronic information and other high-tech industries.Traditional means cannot meet the development needs of modern society because of disadvantages such as high cost, low efficiency and long commercial cycle.In recent years, with the application of big data combined with artificial intelligence in a deeper degree, data-driven machine learning has made great progress in the design, screening and performance prediction of new materials, which has greatly promoted the development and application of new materials.In this review, the basic process of machine learning, the algorithms commonly used in materials science and the relevant materials database are summarized.This review focuses on the application of machine learning in different functions, as well as the performance prediction in the fields of catalyst materials, lithium-ion batteries, semiconductor materials and alloy materials, presenting the latest progress in materials development.Finally, machine learning in the application of new materials are analyzed and prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou驳回了wanci应助
刚刚
2秒前
佳俊发布了新的文献求助20
2秒前
6666发布了新的文献求助20
2秒前
2秒前
2秒前
Lucas应助JDEF采纳,获得20
2秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
小郑同学完成签到,获得积分10
4秒前
6秒前
6秒前
汪咏发布了新的文献求助10
7秒前
7秒前
7秒前
一言为定发布了新的文献求助10
8秒前
李健应助lx采纳,获得10
8秒前
啦啦啦啦发布了新的文献求助30
8秒前
jojo完成签到,获得积分20
9秒前
123发布了新的文献求助10
9秒前
桐桐应助啊哈哈哈哈采纳,获得10
10秒前
淡定的安白完成签到,获得积分10
11秒前
共享精神应助稳重的若雁采纳,获得10
11秒前
柴火妞发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
浮游应助6666采纳,获得10
16秒前
zsr发布了新的文献求助10
17秒前
一言为定完成签到,获得积分10
18秒前
18秒前
闪光的flash完成签到 ,获得积分10
19秒前
20秒前
我是老大应助Wujun采纳,获得10
21秒前
Lucas应助something采纳,获得10
21秒前
科研通AI6应助许诺采纳,获得30
22秒前
22秒前
23秒前
李健的小迷弟应助zz采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849828
求助须知:如何正确求助?哪些是违规求助? 4149215
关于积分的说明 12852851
捐赠科研通 3896596
什么是DOI,文献DOI怎么找? 2141803
邀请新用户注册赠送积分活动 1161232
关于科研通互助平台的介绍 1061308