Improving the Bi-LSTM model with XGBoost and attention mechanism: A combined approach for short-term power load prediction

计算机科学 人工智能 水准点(测量) 短时记忆 电力系统 预处理器 均方误差 期限(时间) 机器学习 功率(物理) 数据挖掘 人工神经网络 循环神经网络 统计 数学 物理 大地测量学 量子力学 地理
作者
Yeming Dai,Qiong Zhou,Mingming Leng,Xinyu Yang,Yanxin Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:130: 109632-109632 被引量:27
标识
DOI:10.1016/j.asoc.2022.109632
摘要

Short term power load forecasting plays an important role in the management and development of power systems with a focus on the reduction in power wastes and economic losses. In this paper, we construct a novel, short-term power load forecasting method by improving the bidirectional long short-term memory (Bi-LSTM) model with Extreme Gradient Boosting (XGBoost) and Attention mechanism. Our model differs from existing methods in the following three aspects. First, we use the weighted grey relational projection algorithm to distinguish the holidays and non-holidays in the data preprocessing. Secondly, we add the Attention mechanism to the Bi-LSTM model to improve the validity and accuracy of prediction. Thirdly, XGBoost is a newly-developed, well-performing prediction model, which is used together with the Attention mechanism to optimize the Bi-LSTM model. Therefore, we develop a novel, combined power load prediction model “Attention-Bi-LSTM + XGBoost” with the weight determination theory-error reciprocal method. Using two power market datasets, we evaluate our prediction method by comparing it with two benchmark models and four other models. With our prediction method, the MAPE, MAE, and RMSE for the Singapore’s power market are 0.387, 43.206, and 54.357, respectively; and those for the Norway’s power market are 0.682, 96.278, and 125.343, respectively. The test results are smaller than the results for six other models. This indicates that our prediction method outperforms the LSTM, Bi-LSTM, Attention-RNN, Attention-LSTM, Attention-Bi-LSTM, and XGBoost in effectiveness, accuracy, and practicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满飞荷发布了新的文献求助20
刚刚
1秒前
1秒前
科研通AI5应助zheng采纳,获得10
1秒前
不懈奋进应助shineedou采纳,获得30
1秒前
世界第一大庸医完成签到,获得积分10
1秒前
酷波er应助AFF采纳,获得10
2秒前
致语发布了新的文献求助10
2秒前
QQLL发布了新的文献求助10
2秒前
好好做人发布了新的文献求助10
2秒前
科研渣渣小草根完成签到,获得积分10
2秒前
小鱼鱼Fish发布了新的文献求助20
2秒前
LL完成签到,获得积分10
2秒前
Hello应助dreamboat采纳,获得30
2秒前
2秒前
科研通AI5应助楼一笑采纳,获得10
4秒前
YOLO发布了新的文献求助10
4秒前
生信精准科研完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
7秒前
zh123完成签到,获得积分10
7秒前
7秒前
7秒前
机智的大船完成签到,获得积分10
8秒前
344061512发布了新的文献求助10
8秒前
asdfghjkl完成签到,获得积分10
9秒前
9秒前
乐乐应助momo采纳,获得30
10秒前
Lelym给Lelym的求助进行了留言
11秒前
善学以致用应助putao采纳,获得10
11秒前
打打应助zh123采纳,获得10
11秒前
木头人应助东方三问采纳,获得20
11秒前
swzzaf完成签到,获得积分10
11秒前
11秒前
wanci应助buhuidanhuixue采纳,获得10
11秒前
aser发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786700
求助须知:如何正确求助?哪些是违规求助? 3332381
关于积分的说明 10255367
捐赠科研通 3047723
什么是DOI,文献DOI怎么找? 1672668
邀请新用户注册赠送积分活动 801476
科研通“疑难数据库(出版商)”最低求助积分说明 760204