反向
化学
生化工程
相关性(法律)
化学空间
催化作用
炼金术
人工智能
管理科学
计算机科学
有机化学
工程类
药物发现
数学
生物化学
哲学
几何学
神学
政治学
法学
作者
Jessica Freeze,H. Ray Kelly,Víctor S. Batista
出处
期刊:Chemical Reviews
[American Chemical Society]
日期:2019-05-06
卷期号:119 (11): 6595-6612
被引量:192
标识
DOI:10.1021/acs.chemrev.8b00759
摘要
In silico catalyst design is a grand challenge of chemistry. Traditional computational approaches have been limited by the need to compute properties for an intractably large number of possible catalysts. Recently, inverse design methods have emerged, starting from a desired property and optimizing a corresponding chemical structure. Techniques used for exploring chemical space include gradient-based optimization, alchemical transformations, and machine learning. Though the application of these methods to catalysis is in its early stages, further development will allow for robust computational catalyst design. This review provides an overview of the evolution of inverse design approaches and their relevance to catalysis. The strengths and limitations of existing techniques are highlighted, and suggestions for future research are provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI