Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning

油页岩 财产(哲学) 中尺度气象学 卷积神经网络 有限元法 人工智能 人工神经网络 图像(数学) 计算机科学 生物系统 样品(材料) 算法 模式识别(心理学) 地质学 材料科学 结构工程 工程类 物理 哲学 认识论 古生物学 热力学 生物 气候学
作者
Xiang Li,Zhanli Liu,Shaoqing Cui,Chengcheng Luo,Ming C. Lin,Zhuo Zhuang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:347: 735-753 被引量:221
标识
DOI:10.1016/j.cma.2019.01.005
摘要

In contrast to the composition uniformity of homogeneous materials, heterogeneous materials are normally composed of two or more distinctive constituents. It is usually recognized that the effective material property of a heterogeneous material is related to the mechanical property and the distribution pattern of each forming constituent. However, to establish an explicit relationship between the macroscale mechanical property and the microstructure appears to be complicated. On the other hand, machine learning methods are broadly employed to excavate inherent rules and correlations based on a significant amount of data samples. Specifically, deep neural networks are established to deal with situations where input–output mappings are extensively complex. In this paper, a method is proposed to establish the implicit mapping between the effective mechanical property and the mesoscale structure of heterogeneous materials. Shale is employed in this paper as an example to illustrate the method. At the mesoscale, a shale sample is a complex heterogeneous composite that consists of multiple mineral constituents. The mechanical properties of each mineral constituent vary significantly, and mineral constituents are distributed in an utterly random manner within shale samples. Large quantities of shale samples are generated based on mesoscale scanning electron microscopy images using a stochastic reconstruction algorithm. Image processing techniques are employed to transform the shale sample images to finite element models. Finite element analysis is utilized to evaluate the effective mechanical properties of the shale samples. A convolutional neural network is trained based on the images of stochastic shale samples and their effective moduli. The trained network is validated to be able to predict the effective moduli of real shale samples accurately and efficiently. Not limited to shale, the proposed method can be further extended to predict effective mechanical properties of other heterogeneous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦如豹完成签到,获得积分10
1秒前
1秒前
椿iii完成签到 ,获得积分10
2秒前
烟花应助刘燕采纳,获得10
3秒前
温暖囧完成签到 ,获得积分10
3秒前
djc完成签到,获得积分10
4秒前
5秒前
ctwcrew发布了新的文献求助10
9秒前
青橘短衫完成签到,获得积分10
12秒前
胡平发布了新的文献求助10
14秒前
慕青应助lszhw采纳,获得10
14秒前
14秒前
14秒前
NexusExplorer应助青橘短衫采纳,获得10
16秒前
18秒前
19秒前
ctwcrew完成签到,获得积分10
19秒前
19秒前
20秒前
刘燕发布了新的文献求助10
21秒前
22秒前
搜集达人应助lifeng采纳,获得10
22秒前
vantlin完成签到,获得积分10
22秒前
leiiiiiiii完成签到,获得积分10
25秒前
lszhw发布了新的文献求助10
26秒前
26秒前
sugar发布了新的文献求助10
27秒前
30秒前
30秒前
刘燕完成签到,获得积分10
32秒前
32秒前
pluto应助科研通管家采纳,获得10
32秒前
小马甲应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
pluto应助科研通管家采纳,获得20
32秒前
32秒前
dpiner完成签到,获得积分10
33秒前
lszhw完成签到,获得积分10
33秒前
35秒前
zhuxd完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522