Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles

纳米棒 光催化分解水 可见光谱 材料科学 单晶 半导体 结晶学 光化学 分解水 纳米技术 化学工程 光电子学 化学 光催化 生物化学 工程类 催化作用 有机化学
作者
Zheng Wang,Yasunobu Inoue,Takashi Hisatomi,Ryo Ishikawa,Qian Wang,Tsuyoshi Takata,Shanshan Chen,Naoya Shibata,Yuichi Ikuhara,Kazunari Domen
出处
期刊:Nature Catalysis [Nature Portfolio]
卷期号:1 (10): 756-763 被引量:462
标识
DOI:10.1038/s41929-018-0134-1
摘要

Although one-step-excitation overall water splitting on a particulate photocatalyst is a simple means of performing scalable solar-to-hydrogen energy conversion, there is a lack of photocatalysts with significant activity under visible light. Despite its superior visible-light absorption, the Ta3N5 photocatalyst has not accomplished overall water splitting due to strong charge recombination at defects. Here, we show rapid growth of Ta3N5 nanorods on lattice-matched cubic KTaO3 particles through the volatilization of potassium species during a brief nitridation process. The Ta3N5 nanorods generated selectively on the edge of KTaO3 are spatially separated and well-defined single crystals free from grain boundaries. When combined with the Rh/Cr2O3 co-catalyst, the single-crystal Ta3N5 nanorods split water into hydrogen and oxygen very efficiently under visible light and simulated sunlight. Our findings demonstrate the importance of nanostructured single-crystal photocatalysts free from structural defects in solar water splitting. Ta3N5 is a semiconductor with very promising photocatalytic properties. However, performing overall water splitting with this material has remained elusive. Now, Domen and co-workers report a method for the synthesis of defect-free single-crystal Ta3N5 nanorods capable of splitting water into hydrogen and oxygen in the presence of a co-catalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的保温杯完成签到,获得积分10
刚刚
满意的柏柳完成签到 ,获得积分10
刚刚
刚刚
大方的荟完成签到,获得积分10
刚刚
刚刚
研友_VZG7GZ应助嘉嘉采纳,获得10
1秒前
小二郎应助大大大大宝凌采纳,获得30
1秒前
狂野盼雁发布了新的文献求助10
1秒前
1秒前
SYLH应助zgnb采纳,获得10
1秒前
444完成签到,获得积分10
2秒前
2秒前
敬老院N号发布了新的文献求助30
2秒前
123完成签到 ,获得积分10
3秒前
磊2024发布了新的文献求助10
3秒前
4秒前
平淡的博涛完成签到,获得积分20
4秒前
4秒前
dada发布了新的文献求助10
5秒前
隐形觅翠发布了新的文献求助10
6秒前
6秒前
一杯美事发布了新的文献求助50
7秒前
7秒前
7秒前
8秒前
芈冖完成签到,获得积分10
8秒前
华仔应助jzyy采纳,获得10
9秒前
机灵夜云发布了新的文献求助10
9秒前
含蓄的荔枝完成签到,获得积分10
9秒前
9秒前
王辰北发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
fa小黄完成签到,获得积分10
11秒前
SciGPT应助银丿星辰采纳,获得10
11秒前
高高冰蝶应助ATM采纳,获得10
11秒前
Lee完成签到,获得积分20
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747