Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI

神经科学 功能连接 大脑皮层 心理学 人脑 大脑定位
作者
Alexander Schaefer,Ru Kong,Evan M. Gordon,Timothy O. Laumann,Xi‐Nian Zuo,Avram J. Holmes,Simon B. Eickhoff,B.T. Thomas Yeo
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:28 (9): 3095-3114 被引量:3263
标识
DOI:10.1093/cercor/bhx179
摘要

A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔子精发布了新的文献求助10
2秒前
dawn完成签到,获得积分10
2秒前
zenmefeishi完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得30
3秒前
莉莉莉莉莉莉莉完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得50
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小桔啊完成签到 ,获得积分10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
ForestEcho发布了新的文献求助10
3秒前
充电宝应助科研通管家采纳,获得20
3秒前
changping应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
yue完成签到 ,获得积分10
6秒前
8秒前
8秒前
英姑应助dawn采纳,获得10
11秒前
大个应助刘爽采纳,获得10
13秒前
16秒前
忧郁的大喷菇完成签到 ,获得积分10
16秒前
17秒前
19秒前
三石发布了新的文献求助10
20秒前
唠叨的冥王星完成签到,获得积分10
21秒前
MrRen完成签到,获得积分10
21秒前
Criminology34应助WANDour采纳,获得10
21秒前
lzb发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331