Interfacial interaction and Schottky contact of two-dimensional WS<sub>2</sub>/graphene heterostructure

石墨烯 异质结 材料科学 肖特基势垒 带隙 电子迁移率 光电子学 半导体 纳米技术 凝聚态物理 物理 二极管
作者
Lijuan Guo,Jisong Hu,Xinguo Ma,Ju Xiang
出处
期刊:Chinese Physics [Science Press]
卷期号:68 (9): 097101-097101 被引量:10
标识
DOI:10.7498/aps.68.20190020
摘要

Two-dimensional (2D) materials exhibit massive potential in research and development in the scientific world due to their unique electrical, optical, thermal and mechanical properties. Graphene is an earliest found two-dimensional material, which has many excellent properties, such as high carrier mobility and large surface area. However, single layer graphene has a zero band gap, which limits its response in electronic devices. Unlike graphene, the transition metal sulfides (TMDs) have various band structures and chemical compositions, which greatly compensate for the defect of zero gap in graphene. The WS<sub>2</sub> is one of the 2D TMDs exhibiting a series of unique properties, such as strong spin-orbit coupling, band splitting and high nonlinear susceptibility, which make it possess many applications in semiconducting optoelectronics and micro/nano-electronics. The 2D semiconductors along with semimetallic graphene are seen as basic building blocks for a new generation of nanoelectronic devices. In this way, the artificially designed TMD heterostructure is a promising option for ultrathin photodetectors. There are few reports on the physical mechanism of carrier mobility and charge distribution at the interface of WS<sub>2</sub>/graphene heterostructure, by varying the interfacial distance of WS<sub>2</sub>/graphene heterostructure to investigate the effect on the electronic properties. Here in this work, the corresponding effects of interface cohesive interaction and electronic properties of WS<sub>2</sub>/graphene heterostructure are studied by first-principles method. The calculation results indicate that the lattice mismatch between monolayer WS<sub>2</sub> and graphene is low, the equilibrium layer distance <i>d</i> of about 3.42 Å for the WS<sub>2</sub>/graphene heterostructure and a weak van der Waals interaction forms in interface. Further, by analyzing the energy band structures and the three-dimensional charge density difference of WS<sub>2</sub>/graphene, we can identify that at the interface of the WS<sub>2</sub> layer there appears an obvious electron accumulation: positive charges are accumulated near to the graphene layer, showing that WS<sub>2</sub> is an n-type semiconductor due to the combination with graphene. Furthermore, the total density of states and corresponding partial density of states of WS<sub>2</sub>/graphene heterostructure are investigated, and the results show that the valence band is composed of hybrid orbitals of W 5d and C 2p, whereas the conduction band is comprised of W 5d and S 3p orbitals, the orbital hybridization between W 5d and S 3p will cause photogenerated electrons to transfer easily from the internal W atoms to the external S atoms, thereby forming a build-in internal electric field from graphene to WS<sub>2</sub>. Finally, by varying the interfacial distance for analyzing the Schottky barrier transition, as the interfacial distance is changed greatly from 2.4 Å to 4.2 Å, the shape of the band changes slightly, however, the Fermi level descends relatively gradually, which can achieve the transition from a p-type Schottky contact to an n-type Schottky contact in the WS<sub>2</sub>/graphene. The plane-averaged charge density difference proves that the interfacial charge transfer and the Fermi level shift are the reasons for determining the Schottky barrier transition in the WS<sub>2</sub>/graphene heterostructure. Our studies may prove to be instrumental in the future design and fabrication of van der Waals based field effect transistors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴的易形完成签到 ,获得积分10
2秒前
偏偏海完成签到,获得积分10
2秒前
小次之山完成签到,获得积分10
2秒前
sunianjinshi完成签到,获得积分10
3秒前
zzz完成签到 ,获得积分10
5秒前
8秒前
雨木目完成签到,获得积分10
9秒前
小高同学完成签到,获得积分10
11秒前
心灵美千秋完成签到 ,获得积分10
15秒前
李大壮完成签到 ,获得积分10
15秒前
15秒前
小黑完成签到 ,获得积分10
16秒前
isonomia完成签到,获得积分10
17秒前
CasterL发布了新的文献求助20
19秒前
细心健柏完成签到 ,获得积分10
22秒前
22秒前
舒心的青槐完成签到 ,获得积分10
24秒前
srx完成签到,获得积分10
24秒前
Nola完成签到 ,获得积分10
26秒前
zho应助lucky666tyy采纳,获得10
26秒前
LJJ完成签到 ,获得积分10
27秒前
时光友岸完成签到,获得积分10
27秒前
稳重奇异果完成签到,获得积分10
27秒前
单薄飞珍发布了新的文献求助10
28秒前
努力努力123完成签到,获得积分10
30秒前
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
cdercder应助科研通管家采纳,获得10
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
fan应助科研通管家采纳,获得10
31秒前
852应助科研通管家采纳,获得10
31秒前
31秒前
眼睛大的寄容完成签到 ,获得积分10
32秒前
35秒前
ranj完成签到,获得积分10
38秒前
细心天德完成签到,获得积分10
39秒前
卫卫完成签到 ,获得积分10
45秒前
顺利白安完成签到,获得积分10
45秒前
lucky666tyy给lucky666tyy的求助进行了留言
45秒前
ZHANG完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323216
关于积分的说明 10213166
捐赠科研通 3038523
什么是DOI,文献DOI怎么找? 1667522
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275