Interfacial interaction and Schottky contact of two-dimensional WS<sub>2</sub>/graphene heterostructure

石墨烯 异质结 材料科学 肖特基势垒 带隙 电子迁移率 光电子学 半导体 纳米技术 凝聚态物理 物理 二极管
作者
Lijuan Guo,Jisong Hu,Xinguo Ma,Ju Xiang
出处
期刊:Chinese Physics [Science Press]
卷期号:68 (9): 097101-097101 被引量:10
标识
DOI:10.7498/aps.68.20190020
摘要

Two-dimensional (2D) materials exhibit massive potential in research and development in the scientific world due to their unique electrical, optical, thermal and mechanical properties. Graphene is an earliest found two-dimensional material, which has many excellent properties, such as high carrier mobility and large surface area. However, single layer graphene has a zero band gap, which limits its response in electronic devices. Unlike graphene, the transition metal sulfides (TMDs) have various band structures and chemical compositions, which greatly compensate for the defect of zero gap in graphene. The WS<sub>2</sub> is one of the 2D TMDs exhibiting a series of unique properties, such as strong spin-orbit coupling, band splitting and high nonlinear susceptibility, which make it possess many applications in semiconducting optoelectronics and micro/nano-electronics. The 2D semiconductors along with semimetallic graphene are seen as basic building blocks for a new generation of nanoelectronic devices. In this way, the artificially designed TMD heterostructure is a promising option for ultrathin photodetectors. There are few reports on the physical mechanism of carrier mobility and charge distribution at the interface of WS<sub>2</sub>/graphene heterostructure, by varying the interfacial distance of WS<sub>2</sub>/graphene heterostructure to investigate the effect on the electronic properties. Here in this work, the corresponding effects of interface cohesive interaction and electronic properties of WS<sub>2</sub>/graphene heterostructure are studied by first-principles method. The calculation results indicate that the lattice mismatch between monolayer WS<sub>2</sub> and graphene is low, the equilibrium layer distance <i>d</i> of about 3.42 Å for the WS<sub>2</sub>/graphene heterostructure and a weak van der Waals interaction forms in interface. Further, by analyzing the energy band structures and the three-dimensional charge density difference of WS<sub>2</sub>/graphene, we can identify that at the interface of the WS<sub>2</sub> layer there appears an obvious electron accumulation: positive charges are accumulated near to the graphene layer, showing that WS<sub>2</sub> is an n-type semiconductor due to the combination with graphene. Furthermore, the total density of states and corresponding partial density of states of WS<sub>2</sub>/graphene heterostructure are investigated, and the results show that the valence band is composed of hybrid orbitals of W 5d and C 2p, whereas the conduction band is comprised of W 5d and S 3p orbitals, the orbital hybridization between W 5d and S 3p will cause photogenerated electrons to transfer easily from the internal W atoms to the external S atoms, thereby forming a build-in internal electric field from graphene to WS<sub>2</sub>. Finally, by varying the interfacial distance for analyzing the Schottky barrier transition, as the interfacial distance is changed greatly from 2.4 Å to 4.2 Å, the shape of the band changes slightly, however, the Fermi level descends relatively gradually, which can achieve the transition from a p-type Schottky contact to an n-type Schottky contact in the WS<sub>2</sub>/graphene. The plane-averaged charge density difference proves that the interfacial charge transfer and the Fermi level shift are the reasons for determining the Schottky barrier transition in the WS<sub>2</sub>/graphene heterostructure. Our studies may prove to be instrumental in the future design and fabrication of van der Waals based field effect transistors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助油赞子采纳,获得10
刚刚
xionghaizi完成签到,获得积分10
2秒前
田様应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
852应助梦璃采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得30
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
cccJF完成签到,获得积分10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
正己化人应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得20
3秒前
善学以致用应助武雨寒采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得20
4秒前
斯文败类应助科研通管家采纳,获得30
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
zcl应助科研通管家采纳,获得20
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助大意的靳采纳,获得10
4秒前
4秒前
5秒前
6秒前
善良的火完成签到 ,获得积分10
8秒前
碧蓝豁发布了新的文献求助30
8秒前
hanshuo4400完成签到,获得积分10
9秒前
10秒前
李小明发布了新的文献求助10
10秒前
10秒前
梁敏发布了新的文献求助10
10秒前
11秒前
11秒前
风清扬发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4722485
求助须知:如何正确求助?哪些是违规求助? 4081899
关于积分的说明 12623029
捐赠科研通 3787428
什么是DOI,文献DOI怎么找? 2091717
邀请新用户注册赠送积分活动 1117724
科研通“疑难数据库(出版商)”最低求助积分说明 994541