估计员
人工神经网络
国家(计算机科学)
数学
正多边形
凸优化
衍生工具(金融)
上下界
詹森不等式
凸函数
数学优化
不平等
凸组合
线性矩阵不等式
应用数学
计算机科学
组合数学
算法
凸分析
统计
人工智能
数学分析
经济
金融经济学
几何学
作者
Guoqiang Tan,Zhanshan Wang
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2020-08-01
卷期号:67 (8): 1477-1481
被引量:14
标识
DOI:10.1109/tcsii.2019.2941546
摘要
In this brief, an improved reciprocally convex inequality is presented to analyse the problem of H ∞ performance state estimation for static neural networks. A tight upper bound of time-derivative for the Lyapunov functional is handled by the improved reciprocally convex inequality. Then, a less conservative H ∞ performance state estimation criterion is derived. As a result, the criterion is employed to present a method for designing suitable estimator gain matrices. A numerical example is used to illustrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI