Automated Classification for Visual-Only Postmortem Inspection of Porcine Pathology

人工智能 计算机科学 目视检查 模式识别(心理学) 病理 金标准(测试) 上下文图像分类 计算机视觉 医学 放射科 图像(数学)
作者
S.J. McKenna,Telmo Amaral,I. Kyriazakis
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:17 (2): 1005-1016 被引量:18
标识
DOI:10.1109/tase.2019.2960106
摘要

Several advantages would arise from the automated detection of pathologies of pig carcasses, including avoidance of the inherent risks of subjectivity and variability between human observers. Here, we develop a novel automated classification of two porcine offal pathologies at abattoir: a focal, localized pathology of the liver and a diffuse pathology of the heart, as cases in point. We develop a pattern recognition system based on machine learning to identify those organs that exhibit signs of the pathology of interest. Specifically, deep neural networks are trained to produce probability heat maps, highlighting regions on the surface of an organ potentially affected by a given condition. A final classification stage then decides whether a given organ is affected by the condition in question based on statistics computed from the heat map. We compare outcomes of automated classification with classification by expert pathologists. Results show the classification of liver and heart pathologies in agreement with an expert at levels comparable to, or exceeding, interexpert agreement. A system using methods such as those presented here has potential to overcome the limitations of human-based abattoir inspection, especially if this is based on visual-only inspection, and ultimately to provide a new gold standard for pathology. Note to Practitioners - The motivation for this article reflects the current requirement for visual-only inspection of livestock carcasses at slaughter houses and the need to provide a gold standard for recognition of carcass pathologies. Visual-only inspection is motivated by the need to reduce cross contamination between carcasses by manual palpation, but this leads to substantial variability in detection accuracy both within and between inspectors. This has significant public health implications. Here we present a system that comprises hardware to capture images of pig offal and software to analyze those images and identify cases of liver milk spots and hearts affected by pericarditis. It can classify high proportions of offal with accuracy comparable to that of veterinarians with extensive experience in pig pathology, thus demonstrating the potential to overcome the limitations of human-based abattoir inspection (especially if it is visual-only) and ultimately to provide a new gold standard. Our work is the first to address the automation of pig offal inspection, thus shedding light on the challenges associated with both appropriate image capture and successful image analysis, such as the need to cope with wide variations in the appearance of both normal and diseased organs, as well as different types of lesions and their impact on how much effort is required from experts in order to produce data needed to train the system. Future directions of work should include extending the system to identify more pathologies and implementing a real-time system to cope with production line speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助明亮谷波采纳,获得10
1秒前
zzz完成签到,获得积分10
1秒前
徐翩跹发布了新的文献求助10
2秒前
九月发布了新的文献求助10
2秒前
一王打尽完成签到,获得积分10
2秒前
吞吞完成签到 ,获得积分10
2秒前
4秒前
4秒前
5秒前
小全完成签到,获得积分10
6秒前
7秒前
9秒前
无花果应助祖国小红花采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
鳗鱼紫萱完成签到,获得积分10
10秒前
zhangyu完成签到,获得积分10
11秒前
科目三应助xaaowang采纳,获得10
12秒前
研友_LXOrO8发布了新的文献求助10
12秒前
zhouyms完成签到,获得积分10
14秒前
张一亦可完成签到,获得积分10
14秒前
15秒前
流心小汤包完成签到,获得积分10
15秒前
junzilan完成签到,获得积分10
16秒前
王宇完成签到,获得积分10
16秒前
yy完成签到,获得积分10
16秒前
积极涵阳发布了新的文献求助10
17秒前
17秒前
研友_RLN0vZ完成签到,获得积分10
17秒前
花样年华完成签到,获得积分10
18秒前
淡定的一德完成签到,获得积分10
19秒前
19秒前
qiqi完成签到,获得积分10
19秒前
20秒前
21秒前
冬菊完成签到 ,获得积分10
22秒前
Josie完成签到 ,获得积分10
23秒前
张强发布了新的文献求助10
24秒前
24秒前
koi发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733391
求助须知:如何正确求助?哪些是违规求助? 5348377
关于积分的说明 15323747
捐赠科研通 4878502
什么是DOI,文献DOI怎么找? 2621247
邀请新用户注册赠送积分活动 1570363
关于科研通互助平台的介绍 1527280