材料科学
微晶
薄膜
表面粗糙度
铋
表面光洁度
半导体
单晶
凝聚态物理
纳米技术
光电子学
复合材料
结晶学
冶金
化学
物理
作者
Nan Wang,Yuxiang Dai,Tianlin Wang,Huazhe Yang,Yang Qi
出处
期刊:IUCrJ
[International Union of Crystallography]
日期:2019-12-02
卷期号:7 (1): 49-57
被引量:23
标识
DOI:10.1107/s2052252519015458
摘要
The preferred orientation growth characteristics and surface roughness of polycrystalline bis-muth (Bi) thin films fabricated on glass substrates using the molecular beam epitaxy method were investigated at temperatures ranging from 18 to 150°C. The crystallization and morphology were analyzed in detail and the polycrystalline metal film structure-zone model (SZM) was modified to fit the polycrystalline Bi thin film. The boundary temperature between Zone T and Zone II in the SZM shifted to higher temperatures with the increase in film thickness or the decrease of growth rate. Furthermore, the effect of the thickness and surface roughness on the transport properties was investigated, especially for Bi thin films in Zone II. A two-transport channels model was adopted to reveal the influence of the film thickness on the competition between the metallic surface states and the semiconducting bulk states, which is consistent with the results of Bi single-crystal films. Therefore, the polycrystalline Bi thin films are expected to replace the single-crystal films in the application of spintronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI