Boris Miguel López-Rebollar,Humberto Salinas-Tapia,Daury García-Pulido,María Dolores Durán-García,Iván Gallego-Alarcón,Carlos Roberto Fonseca,Juan Antonio García-Aragón,Carlos Díaz-Delgado
The use of recirculating aquaculture systems (RAS) permits the production of fish with a small amount of water and they are an alternative to the scarcity and pollution of water resources. The implementation of an annular settler made by concentric cylinder in an RAS tank allowed the optimal growth conditions of the fish and improves the removal of solids naturally with the presence of low water velocities in the sedimentation zone. The hydrodynamic analysis conducted in this study using computational fluid dynamics allowed the evaluation of different parameters for the geometric design of the settler and its effect on the velocity flow fields that directly affect the particle sedimentation process. Through the evaluation of different geometric configurations of the settler, the use of gratings in the perimeter of the settler with maximum height hr = 1/6h, width and separation of 0.5hr, for tank diameter (D) to water depth (h) ratios (D/h) less than 6 was established. These conditions produced velocities between 15−25 cm/s into the cultivation zone, optimal for fish growth. In addition, with the perimetral gratings, velocities less than 2 cm/s are generated inside the settler, situation that benefits the settling of particles and self-cleaning of the tank.