亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics-Based Prediction of Long-Term Treatment Response of Vestibular Schwannomas Following Stereotactic Radiosurgery

医学 放射外科 前庭神经鞘瘤 无线电技术 接收机工作特性 磁共振成像 回顾性队列研究 前庭系统 队列 放射科 核医学 内科学 放射治疗
作者
Patrick Langenhuizen,Svetlana Zinger,Sieger Leenstra,Henricus P. M. Kunst,Jef J. S. Mulder,Patrick E. J. Hanssens,Peter H. N. de With,Jeroen B. Verheul
出处
期刊:Otology & Neurotology [Ovid Technologies (Wolters Kluwer)]
卷期号:41 (10): e1321-e1327 被引量:20
标识
DOI:10.1097/mao.0000000000002886
摘要

Stereotactic radiosurgery (SRS) is one of the treatment modalities for vestibular schwannomas (VSs). However, tumor progression can still occur after treatment. Currently, it remains unknown how to predict long-term SRS treatment outcome. This study investigates possible magnetic resonance imaging (MRI)-based predictors of long-term tumor control following SRS.Retrospective cohort study.Tertiary referral center.Analysis was performed on a database containing 735 patients with unilateral VS, treated with SRS between June 2002 and December 2014. Using strict volumetric criteria for long-term tumor control and tumor progression, a total of 85 patients were included for tumor texture analysis.All patients underwent SRS and had at least 2 years of follow-up.Quantitative tumor texture features were extracted from conventional MRI scans. These features were supplied to a machine learning stage to train prediction models. Prediction accuracy, sensitivity, specificity, and area under the receiver operating curve (AUC) are evaluated.Gray-level co-occurrence matrices, which capture statistics from specific MRI tumor texture features, obtained the best prediction scores: 0.77 accuracy, 0.71 sensitivity, 0.83 specificity, and 0.93 AUC. These prediction scores further improved to 0.83, 0.83, 0.82, and 0.99, respectively, for tumors larger than 5 cm.Results of this study show the feasibility of predicting the long-term SRS treatment response of VS tumors on an individual basis, using MRI-based tumor texture features. These results can be exploited for further research into creating a clinical decision support system, facilitating physicians, and patients to select a personalized optimal treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Luminous发布了新的文献求助10
3秒前
可爱的函函应助haohaohao采纳,获得10
7秒前
7秒前
SciGPT应助haohaohao采纳,获得10
7秒前
无花果应助haohaohao采纳,获得10
7秒前
FashionBoy应助haohaohao采纳,获得10
7秒前
共享精神应助haohaohao采纳,获得10
7秒前
大个应助haohaohao采纳,获得10
7秒前
赘婿应助haohaohao采纳,获得10
7秒前
bkagyin应助haohaohao采纳,获得10
7秒前
完美世界应助OYJH采纳,获得10
7秒前
李爱国应助小龙虾仙女采纳,获得10
8秒前
shinn发布了新的文献求助10
8秒前
爆米花应助flowerzebra采纳,获得10
8秒前
Orange应助林屿溪采纳,获得10
11秒前
侃侃完成签到,获得积分10
11秒前
CCC完成签到,获得积分10
12秒前
森林发布了新的文献求助10
12秒前
英姑应助虚心焦采纳,获得10
14秒前
Luminous完成签到,获得积分10
15秒前
15秒前
15秒前
林屿溪发布了新的文献求助10
18秒前
ho发布了新的文献求助30
20秒前
Li发布了新的文献求助30
21秒前
22秒前
子平完成签到 ,获得积分0
24秒前
优美的谷完成签到,获得积分10
24秒前
shushu完成签到 ,获得积分10
25秒前
林屿溪完成签到,获得积分10
25秒前
虚心焦发布了新的文献求助10
27秒前
打打应助shinn采纳,获得10
30秒前
wf完成签到,获得积分10
31秒前
一行完成签到,获得积分10
36秒前
37秒前
37秒前
38秒前
38秒前
一行发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401221
求助须知:如何正确求助?哪些是违规求助? 4520174
关于积分的说明 14079063
捐赠科研通 4433264
什么是DOI,文献DOI怎么找? 2434054
邀请新用户注册赠送积分活动 1426246
关于科研通互助平台的介绍 1404807