Binarized Attributed Network Embedding via Neural Networks

计算机科学 嵌入 人工智能 人工神经网络 聚类分析 模式识别(心理学) 汉明空间 自编码 降维 数据挖掘 汉明码 算法 解码方法 区块代码
作者
Hangyu Xia,Neng Gao,Peng Jia,Jingjie Mo,Jiong Wang
标识
DOI:10.1109/ijcnn48605.2020.9206717
摘要

Traditional attributed network embedding methods are designed to map structural and attribute information of networks jointly into a continuous Euclidean space, while recently a novel branch of them named binarized attributed network embedding has emerged to learn binary codes in Hamming space, aiming to save time and memory costs and to naturally fit node retrieval task. However, current binarized attributed network embedding methods are scarce and mostly ignore the local attribute similarity between each pair of nodes. Besides, none of them attempt to control the independency of each dimension(bit) of the learned binary representation vectors. As existing methods still need improving, we propose an unsupervised Neural-based Binarized Attributed Network Embedding (NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman proximity matrix from predecessors to aggregate high-order features for each node. Secondly, we feed the aggregated features into an autoencoder with the attribute similarity penalizing term and the orthogonality term to make further dimension reduction. To solve the problem of integer optimization we adopt the relaxation-quantization method during the process of training neural networks. Empirically, we evaluate the performance of NBANE through node classification and clustering tasks on three real-world datasets and study a case on fast retrieval in academic networks. Our method achieves better performance over state- of-the-art baselines methods of various types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
细心老姆完成签到,获得积分10
1秒前
捏嘿发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
英俊的铭应助木木采纳,获得10
2秒前
3秒前
小林完成签到,获得积分10
3秒前
小马甲应助liuwei采纳,获得10
3秒前
科研通AI6应助木缘采纳,获得10
4秒前
Orange应助愤怒的山兰采纳,获得10
4秒前
劳伦斯完成签到 ,获得积分10
4秒前
吴昊俣完成签到,获得积分20
4秒前
小马甲应助tn采纳,获得10
4秒前
球球爱科研完成签到,获得积分10
5秒前
5秒前
Angelina应助我能发顶刊采纳,获得10
5秒前
5秒前
Frozen Flame发布了新的文献求助10
6秒前
简择两完成签到,获得积分10
6秒前
深情安青应助DDDD采纳,获得10
6秒前
Akim应助www采纳,获得10
6秒前
6秒前
夜神月发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
ss发布了新的文献求助10
8秒前
AneyWinter66应助任怡采纳,获得10
8秒前
情怀应助小郑不过柱子采纳,获得10
8秒前
小李发布了新的文献求助10
8秒前
专注的问寒给粽粽的求助进行了留言
9秒前
王Hope发布了新的文献求助10
9秒前
一点点发布了新的文献求助10
9秒前
Ava应助加油少年采纳,获得10
10秒前
XL发布了新的文献求助10
10秒前
XianshengJin应助rongyiming采纳,获得10
10秒前
科研通AI6应助开朗的诺言采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5592546
求助须知:如何正确求助?哪些是违规求助? 4678486
关于积分的说明 14805429
捐赠科研通 4641796
什么是DOI,文献DOI怎么找? 2533998
邀请新用户注册赠送积分活动 1502102
关于科研通互助平台的介绍 1469205