CPM-Net: A 3D Center-Points Matching Network for Pulmonary Nodule Detection in CT Scans

计算机科学 人工智能 最小边界框 卷积神经网络 模式识别(心理学) 偏移量(计算机科学) 结核(地质) 计算机视觉 生物 图像(数学) 古生物学 程序设计语言
作者
Tao Song,Jieneng Chen,Xiangde Luo,Yechong Huang,Xinglong Liu,Ning Huang,Yinan Chen,Zhaoxiang Ye,Huaqiang Sheng,Shaoting Zhang,Guotai Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 550-559 被引量:25
标识
DOI:10.1007/978-3-030-59725-2_53
摘要

Automatic and accurate lung nodule detection from Computed Tomography (CT) scans plays a vital role in efficient lung cancer screening. Despite the state-of-the-art performance obtained by recent anchor-based detectors using Convolutional Neural Networks (CNNs) for this task, they require pre-determined anchor parameters such as the size, number and aspect ratio of anchors, and have limited robustness when dealing with lung nodules with a massive variety of sizes. To overcome this problem, we propose a 3D center-points matching detection network (CPM-Net) that is anchor-free and automatically predicts the position, size and aspect ratio of nodules without manual design of nodule/anchor parameters. The CPM-Net uses center-points matching strategy to find center-points, and then uses features of these points correspondingly to regress the size of the bounding box of nodule and local offset of the center points. To better capture spatial information and 3D context for the detection, we propose to fuse multi-level spatial coordinate maps with the feature extractor and combine it with 3D squeeze-and-excitation attention modules. To deal with the enormous imbalance between the number of positive and negative samples during center points matching, we propose a hybrid method of adaptive points mining and re-focal loss. Experimental results on LUNA16 dataset showed that our proposed CPM-Net achieved superior performance for lung nodule detection compared with state-of-the-art anchor-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁纯发布了新的文献求助10
2秒前
情怀应助CharlotteBlue采纳,获得50
3秒前
俭朴夜雪完成签到,获得积分10
3秒前
3秒前
苏苏发布了新的文献求助10
4秒前
5秒前
阿虎完成签到,获得积分10
6秒前
Quinna完成签到,获得积分10
7秒前
bofu发布了新的文献求助10
9秒前
9秒前
李麟发布了新的文献求助10
11秒前
12秒前
猪猪hero应助Answer采纳,获得10
12秒前
Jasper应助wjx采纳,获得10
13秒前
所所应助wjx采纳,获得10
13秒前
科研通AI5应助wjx采纳,获得10
13秒前
科研通AI5应助wjx采纳,获得10
13秒前
完美世界应助wjx采纳,获得10
13秒前
Orange应助wjx采纳,获得10
13秒前
可爱的函函应助wjx采纳,获得10
14秒前
科研通AI5应助wjx采纳,获得30
14秒前
科研通AI5应助wjx采纳,获得10
14秒前
科研通AI5应助wjx采纳,获得30
14秒前
bofu发布了新的文献求助10
14秒前
CharlotteBlue应助文件撤销了驳回
15秒前
樱桃小贩完成签到,获得积分10
15秒前
圆1223完成签到 ,获得积分20
17秒前
啥时候吃火锅完成签到 ,获得积分0
18秒前
所所应助友好的天奇采纳,获得10
19秒前
19秒前
20秒前
科研通AI5应助wjx采纳,获得10
21秒前
丘比特应助wjx采纳,获得10
21秒前
科研通AI5应助wjx采纳,获得10
21秒前
我是老大应助wjx采纳,获得10
21秒前
科研通AI5应助wjx采纳,获得10
21秒前
充电宝应助wjx采纳,获得10
21秒前
bofu发布了新的文献求助30
21秒前
牛奶开水完成签到 ,获得积分10
22秒前
Joao79完成签到,获得积分10
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307