Deep learning framework based on integration of S-Mask R-CNN and Inception-v3 for ultrasound image-aided diagnosis of prostate cancer

计算机科学 人工智能 散斑噪声 深度学习 超声波 分割 特征(语言学) 卷积神经网络 计算机视觉 前列腺 斑点图案 像素 卷积(计算机科学) 模式识别(心理学) 人工神经网络 医学 放射科 癌症 内科学 哲学 语言学
作者
Zhiyong Liu,Chuan Yang,Jun Huang,Shaopeng Liu,Yumin Zhuo,Xu Lu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:114: 358-367 被引量:112
标识
DOI:10.1016/j.future.2020.08.015
摘要

The computer-aided diagnosis of prostate ultrasound images can aid in the detection and treatment of prostate cancer. However, the ultrasound images of the prostate sometimes come with serious speckle noise, low signal-to-noise ratio, and poor detection accuracy. To overcome this shortcoming, we proposed a deep learning model that integrates S-Mask R-CNN and Inception-v3 in the ultrasound image-aided diagnosis of prostate cancer in this paper. The improved S-Mask R-CNN was used to realize the accurate segmentation of prostate ultrasound images and generate candidate regions. The region of interest align algorithm was used to realize the pixel-level feature point positioning. The corresponding binary mask of prostate images was generated by the convolution network to segment the prostate region and the background. Then, the background information was shielded, and a data set of segmented ultrasound images of the prostate was constructed for the Inception-v3 network for lesion detection. A new network model was added to replace the original classification module, which is composed of forward and back propagation. Forward propagation mainly transfers the characteristics extracted from the convolution layer pooling layer below the pool_3 layer through the transfer learning strategy to the input layer and then calculates the loss value between the classified and label values to identify the ultrasound lesion of the prostate. The experimental results showed that the proposed method can accurately detect the ultrasound image of the prostate and segment prostate information at the pixel-level simultaneously. The proposed method has higher accuracy than that of the doctor’s manual diagnosis and other detection methods. Our simple and effective approach will serve as a solid baseline and help ease future research in the computer-aided diagnosis of prostate ultrasound images. Furthermore, this work will promote the development of prostate cancer ultrasound diagnostic technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小丿丫丿丫完成签到 ,获得积分10
1秒前
1秒前
科研通AI2S应助活泼滑板采纳,获得10
2秒前
LRR发布了新的文献求助10
2秒前
顾矜应助任浩然采纳,获得10
2秒前
2秒前
温柔的香草完成签到,获得积分10
3秒前
淼淼发布了新的文献求助10
3秒前
自然的元风完成签到,获得积分10
4秒前
4秒前
李健应助秃头钙钛矿采纳,获得10
4秒前
bkagyin应助酷酷菲音采纳,获得10
4秒前
谢雨晨发布了新的文献求助10
4秒前
火以敬完成签到,获得积分10
5秒前
勤奋静曼发布了新的文献求助10
5秒前
君看一叶舟完成签到,获得积分10
5秒前
6秒前
焦阳完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
HUlllll完成签到,获得积分10
9秒前
10秒前
温暖芷文发布了新的文献求助10
11秒前
任性雨筠发布了新的文献求助10
12秒前
书生发布了新的文献求助10
14秒前
义气硬币发布了新的文献求助10
14秒前
英俊的铭应助烂漫的寻冬采纳,获得10
15秒前
15秒前
科研通AI5应助阔达静珊采纳,获得10
16秒前
木木完成签到,获得积分10
16秒前
18秒前
18秒前
Akim应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799816
求助须知:如何正确求助?哪些是违规求助? 3345094
关于积分的说明 10323610
捐赠科研通 3061657
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462