Machine learning and soil sciences: a review aided by machine learning tools

过度拟合 计算机科学 可解释性 机器学习 人工智能 支持向量机 潜在Dirichlet分配 数据科学 人工神经网络 主题模型
作者
José Padarian,Budiman Minasny,Alex B. McBratney
出处
期刊:Soil [Copernicus GmbH]
卷期号:6 (1): 35-52 被引量:403
标识
DOI:10.5194/soil-6-35-2020
摘要

Abstract. The application of machine learning (ML) techniques in various fields of science has increased rapidly, especially in the last 10 years. The increasing availability of soil data that can be efficiently acquired remotely and proximally, and freely available open-source algorithms, have led to an accelerated adoption of ML techniques to analyse soil data. Given the large number of publications, it is an impossible task to manually review all papers on the application of ML in soil science without narrowing down a narrative of ML application in a specific research question. This paper aims to provide a comprehensive review of the application of ML techniques in soil science aided by a ML algorithm (latent Dirichlet allocation) to find patterns in a large collection of text corpora. The objective is to gain insight into publications of ML applications in soil science and to discuss the research gaps in this topic. We found that (a) there is an increasing usage of ML methods in soil sciences, mostly concentrated in developed countries, (b) the reviewed publications can be grouped into 12 topics, namely remote sensing, soil organic carbon, water, contamination, methods (ensembles), erosion and parent material, methods (NN, neural networks, SVM, support vector machines), spectroscopy, modelling (classes), crops, physical, and modelling (continuous), and (c) advanced ML methods usually perform better than simpler approaches thanks to their capability to capture non-linear relationships. From these findings, we found research gaps, in particular, about the precautions that should be taken (parsimony) to avoid overfitting, and that the interpretability of the ML models is an important aspect to consider when applying advanced ML methods in order to improve our knowledge and understanding of soil. We foresee that a large number of studies will focus on the latter topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠悠发布了新的文献求助10
刚刚
my196755完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
BareBear应助冷静映安采纳,获得20
3秒前
3秒前
今日看文献了吗完成签到,获得积分10
4秒前
4秒前
4秒前
深情冬云应助huihui采纳,获得20
5秒前
5秒前
我是老大应助小艾同学采纳,获得10
5秒前
5秒前
狂野太兰发布了新的文献求助10
5秒前
ZiZi完成签到 ,获得积分10
5秒前
ZiZi完成签到 ,获得积分10
5秒前
ZiZi完成签到 ,获得积分10
5秒前
miku1发布了新的文献求助10
5秒前
jjjjj完成签到,获得积分10
6秒前
紫色哀伤发布了新的文献求助10
6秒前
负责半蕾完成签到,获得积分10
6秒前
6秒前
unflycn完成签到,获得积分10
7秒前
ffhh完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
包容元芹完成签到,获得积分10
10秒前
11秒前
科研通AI6应助yy采纳,获得10
11秒前
11秒前
12秒前
一一发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
yee发布了新的文献求助10
13秒前
木又应助huihui采纳,获得20
13秒前
13秒前
15秒前
Liu发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630726
求助须知:如何正确求助?哪些是违规求助? 4723433
关于积分的说明 14975167
捐赠科研通 4788960
什么是DOI,文献DOI怎么找? 2557317
邀请新用户注册赠送积分活动 1518042
关于科研通互助平台的介绍 1478679