亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Creatine Transporter, Reduced in Colon Tissues From Patients With Inflammatory Bowel Diseases, Regulates Energy Balance in Intestinal Epithelial Cells, Epithelial Integrity, and Barrier Function

紧密连接 溃疡性结肠炎 肌酸 封堵器 势垒函数 炎症性肠病 结肠炎 肠粘膜 化学 分子生物学 生物 癌症研究 病理 细胞生物学 内科学 免疫学 医学 内分泌学 疾病
作者
Caroline Hall,J. Scott Lee,Emily Murphy,Mark E. Gerich,Rachael Dran,Louise Glover,Zuhair I. Abdulla,Matthew R. Skelton,Sean P. Colgan
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:159 (3): 984-998.e1 被引量:82
标识
DOI:10.1053/j.gastro.2020.05.033
摘要

Background & AimsPatients with inflammatory bowel diseases (IBDs) have intestinal barrier dysfunction. Creatine regulates energy distribution within cells and reduces the severity of colitis in mice. We studied the functions of the creatine transporter solute carrier family 6 member 8 (SLC6A8, also called CRT) in intestinal epithelial cells (IECs) and mice, and we measured levels in mucosal biopsies from patients with IBD.MethodsColon biopsy specimens from patients with IBD (30 with Crohn’s disease and 27 with ulcerative colitis) and 30 patients without IBD (control individuals) and colon tissues from mice (with and without disruption of Crt) were analyzed by immunofluorescence, immunoblots, and/or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). CRT was knocked down or overexpressed in T84 cells, which were analyzed by immunofluorescence, immunoblots, high-performance liquid chromatography (to measure creatine levels), qRT-PCR, transepithelial electrical resistance, barrier function, actin localization, wound healing, mitochondrial oxygen consumption, and glycolysis extracellular acidification rate assays. Organoids from colon cells of CRT-knockout mice and control mice were analyzed by qRT-PCR, immunoblot, and transepithelial electrical resistance.ResultsCRT localized around tight junctions (TJs) of T84 IECs. In analyses of IECs with CRT knockdown or overexpression, we found that CRT regulates intracellular creatine, barrier formation, and wound healing. CRT-knockout organoids also had diminished barrier formation. In the absence of adequate creatine, IECs transition toward a stressed, glycolysis-predominant form of metabolism; this resulted in leaky TJs and mislocalization of actin and TJ proteins. Colon tissues from patients with IBD had reduced levels of CRT messenger RNA compared with those from control individuals.ConclusionsIn an analysis of IEC cell lines and colonoids derived from CRT-knockout mice, we found that CRT regulates energy balance in IECs and thereby epithelial integrity and barrier function. Mucosal biopsy specimens from patients with ulcerative colitis and inactive Crohn’s disease have lower levels of CRT, which might contribute to the reduced barrier function observed in patients with IBD. Patients with inflammatory bowel diseases (IBDs) have intestinal barrier dysfunction. Creatine regulates energy distribution within cells and reduces the severity of colitis in mice. We studied the functions of the creatine transporter solute carrier family 6 member 8 (SLC6A8, also called CRT) in intestinal epithelial cells (IECs) and mice, and we measured levels in mucosal biopsies from patients with IBD. Colon biopsy specimens from patients with IBD (30 with Crohn’s disease and 27 with ulcerative colitis) and 30 patients without IBD (control individuals) and colon tissues from mice (with and without disruption of Crt) were analyzed by immunofluorescence, immunoblots, and/or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). CRT was knocked down or overexpressed in T84 cells, which were analyzed by immunofluorescence, immunoblots, high-performance liquid chromatography (to measure creatine levels), qRT-PCR, transepithelial electrical resistance, barrier function, actin localization, wound healing, mitochondrial oxygen consumption, and glycolysis extracellular acidification rate assays. Organoids from colon cells of CRT-knockout mice and control mice were analyzed by qRT-PCR, immunoblot, and transepithelial electrical resistance. CRT localized around tight junctions (TJs) of T84 IECs. In analyses of IECs with CRT knockdown or overexpression, we found that CRT regulates intracellular creatine, barrier formation, and wound healing. CRT-knockout organoids also had diminished barrier formation. In the absence of adequate creatine, IECs transition toward a stressed, glycolysis-predominant form of metabolism; this resulted in leaky TJs and mislocalization of actin and TJ proteins. Colon tissues from patients with IBD had reduced levels of CRT messenger RNA compared with those from control individuals. In an analysis of IEC cell lines and colonoids derived from CRT-knockout mice, we found that CRT regulates energy balance in IECs and thereby epithelial integrity and barrier function. Mucosal biopsy specimens from patients with ulcerative colitis and inactive Crohn’s disease have lower levels of CRT, which might contribute to the reduced barrier function observed in patients with IBD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈发布了新的文献求助70
5秒前
9秒前
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
16秒前
27秒前
djy发布了新的文献求助10
31秒前
42秒前
46秒前
堪冷之发布了新的文献求助10
51秒前
53秒前
57秒前
djy完成签到,获得积分10
1分钟前
1分钟前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
嘻嘻哈哈发布了新的文献求助80
1分钟前
小西完成签到 ,获得积分10
1分钟前
科研通AI6应助动听衬衫采纳,获得30
1分钟前
斯文败类应助堪冷之采纳,获得10
1分钟前
1分钟前
2分钟前
usami42发布了新的文献求助10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
2分钟前
liumenghan完成签到,获得积分10
2分钟前
andrele发布了新的文献求助10
2分钟前
usami42完成签到,获得积分10
2分钟前
浮游应助超级mxl采纳,获得10
3分钟前
3分钟前
zyn应助嘻嘻哈哈采纳,获得60
3分钟前
zyn应助嘻嘻哈哈采纳,获得70
3分钟前
3分钟前
关琦完成签到,获得积分10
3分钟前
嘻嘻哈哈发布了新的文献求助70
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5280016
求助须知:如何正确求助?哪些是违规求助? 4435020
关于积分的说明 13805905
捐赠科研通 4314826
什么是DOI,文献DOI怎么找? 2368282
邀请新用户注册赠送积分活动 1363713
关于科研通互助平台的介绍 1326938